Как рассчитать простые и сложные проценты. Начисления процентов формула


Формулы расчета процентов по вкладу: простой и сложный процент

Основная цель обращения клиента, у которого есть сбережения, в банк заключается в том, чтобы сохранить и приумножить денежные средства. Чтобы выбрать из большого ассортимента предложений различных организаций наиболее выгодный вариант, нужно самостоятельно уметь рассчитывать будущую доходность вложений. Зачастую, варианты, которые на первый взгляд кажутся самыми выгодными и интересными, не приносят хорошего результата. Поэтому нужно уметь прогнозировать проценты по вкладу до совершения сделки.

Для расчетов доходности по вкладу используется простой и сложный методы начисления процентов. Каждый из них имеет свои особенности и «подводные камни», которые стоит учитывать. Рассмотрим подробнее, как пользоваться формулами для расчета процентов по вкладу, что означает каждая составляющая, и посчитаем на примерах эффективность каждого метода.

Формулы начисления процентов.

Доходность практически любого вклада можно рассчитать самостоятельно, зная методику расчета. Для этого нужно знать параметры будущего вложения, к которым относится:

  • Депозитная сумма.
  • Ставка (в %).
  • Периодичность процентного начисления.
  • Срок размещения денег.

Формула простых процентов.

Она используется тогда, когда начисляемый доход присоединяется к основному телу депозита в конце его срока или не присоединяется и выводится на текущий счет или пластиковую карточку. Этот порядок расчета стоит учесть, когда размещается солидная сумма на длительный срок. Обычно в данном случае банки применяют варианты размещения без капитализации, что понижает общую выгоду вкладчика.

Формула простого %:Сумма % — это  доход, полученный через i-ый промежуток времени.

Р – изначальный объем вложений.

i – депозитная годовая ставка.

t – срок вложения.

T – число дней в году.

Рассмотрим пример: разместим 100 000 рублей на полгода под 12%. Рассчитаем полученный доход:

Таким образом, через полгода со счета можно будет снять 105 950,68 руб.

Читайте также:  Лицензия на кредитование

Формула сложных процентов.

Она применяется реже в депозитной практике банка, но такие предложения найти можно. Для большинства вкладчиков они  не являются привлекательными по причине того, что ставки по ним ниже, чем по продуктам, когда доход начисляется  только по окончании действия депозитного договора. Периодичность присоединения дохода может быть разной: раз в месяц, раз в неделю, раз в квартал, каждый год. Она подразумевает под собой капитализацию или начисление «процентов на проценты».

Формула сложных %-ов:

P – изначальная сумма вклада.

i – депозитная годовая ставка.

k – число дней в периоде, через который начисляется доход.

T – число дней в году.

n – число капитализаций дохода в течение всего срока депозита.

Рассмотрим пример №1: разместим 100 000 рублей под 12% годовых на полгода с ежемесячной капитализацией.Полученное значение подтвердим через расчеты в Excel.

Таким образом, благодаря ежемесячной капитализации, общий итог вложений оказался выгоднее, чем в варианте, когда проценты причисляются  в конце срока.

Пример №2: разместим 100 000 рублей на 6 месяцев под 12% годовых с еженедельной капитализацией.

Полученное значение подтвердим через расчеты в Excel.

расчет к примеру №2

Пример №3: разместим 100 000 рублей на 1 год под 12% годовых с ежеквартальной капитализацией.

Полученное значение подтвердим через расчеты в Excel.

расчет к примеру №3

Пример №4: разместим 100 000 руб на 1 месяц под 12% годовых с ежедневной капитализацией.

Полученное значение подтвердим через расчеты в Excel.

расчеты к примеру №4

Таким образом, капитализация и формула сложных процентов дает более выгодный эффект, поэтому, при размещении денег в банке не стоит упускать из виду подобные варианты размещения.

Оцените нас

Примите участие в жизни нашего проекта. Оцените статью(продукт). Поставьте лайк, если вам была полезна статья. Ваши комментарии нужны нам!

Подробнее Ajax Loader

investor100.ru

Формула простых и сложный процентов по вкладам. Пример формулы расчета процентов.

Любой клиент, выбирая банк для вложения своего капитала, обращает внимание не только на надежность финансового учреждения, но и на процентную ставку, для получения максимального дохода по вкладу.

Однако, необходимо учитывать не столько годовую ставку, сколько принцип начисления прибыли. В сфере финансов есть два метода: простой и сложный процент.

Нужно ознакомиться с формулами и основными параметрами расчетов для понимания, какое из предложений по вкладам будет наиболее выгодным для клиента, при различных условиях заключения договора.

Формула сложных процентов по вкладам

Простые проценты

Простой процент означает, что начисление дополнительного дохода происходит единоразово по окончании периода хранения средств. При этом, если действие депозитного договора автоматически продляется, доход за следующий период будет начисляться на первоначальную сумму взноса, без учета процентов за прошлый срок.

Простой процент начисляется по формуле:

S= V*(1+P*n/100),

где S – сумма, которую получит клиент по окончании срока действия депозита (первоначальный вклад + начисленный процент),

V – первоначальная сумма вложения,

P – процентная ставка за период,

n – период вложения.

При открытии депозита на 1 год в размере 100 тыс. рублей и 8 % годовых, клиент через год получит 100*(1+8*1/100)=108 тыс. рублей.

  • При продлении договора еще на год, по истечении данного периода вкладчик получит такой же доход в 8 тыс. рублей и заберет сумму в 116 тыс.
  • Если размещение вклада по договору происходит на короткий период (несколько месяцев), то годовую процентную ставку нужно разделить на 12 месяцев и умножить на период вложения.
  • При вложении на полгода вкладчик получит: 100*(1+8/12*6/100) = 104 тыс. рублей.

Сложные проценты

Начисление сложных процентов по депозиту или капитализация – это эффект, при котором процент начисления прибавляется к первоначальной сумме вклада, а на эту сумму вновь происходит начисление процента в следующий период.

Капитализация происходит с разной периодичностью (каждый месяц, раз в полгода и т.п.)

Расчет в этом случае производится по формуле:

S= V*(1+P/100)^n,

n в данном случае – количество периодов капитализации.

Например, при годовой сделке на сумму 100 тыс. рублей и 8% за год и ежемесячном начислении процентов, получится:

100*(1+8/100/12)^12 = 108,3 тыс. рублей.

  • Наглядно видно, что дополнительный доход с учетом капитализации больше, чем получаемый по формуле простого процента.
  • Но при выборе лучшего предложения по оформлению вклада с капитализацией, нужно уточнить периодичность начисления процентов. Чем чаще это будет происходить, тем большая сумма получится при закрытии депозитного счета.

Как выбрать лучшие условия?

Начисление простых процентов происходит в арифметической прогрессии, в то время как сложные проценты выдают прибыль в прогрессии геометрической.

Это не означает, что для успешного вложения всегда стоит останавливать свой выбор на предложении с капитализацией вклада.

С учетом срока действия депозитного договора, суммы вклада, и (что самое основное) периодичности начисления процентов, не всегда прибыль от капитализации будет больше, чем при заключении договора с одноразовой выплатой процентов в конце периода.

  • При заключении договора на 3 месяца и периодичности капитализации в 6 месяцев, клиент заберет свой вклад раньше, чем произойдет начисление процентов. В этом случае оформление простого вклада будет иметь более логичный смысл.
  • Также, если есть возможность выбора частоты начисления процентов (каждую неделю, месяц или три месяца), лучше выбрать капитализацию, где проценты будут приходить на счет в более короткие термины. Выбирая между периодичностью начислений в три месяца и один, примите решение в пользу последнего.
  • При открытии краткосрочного вклада, клиентам банка нужно учесть, что на день закрытия депозита начисление процентов не происходит. Если вкладчик оформил договор на 2 недели и забирает средства на 14-й день, то начисление процентов будет произведено только за 13 дней.

В тексте депозитного договора буквально не говорится, будет происходить начисление простых или сложных процентов. Поэтому, исходя из условий договора, клиент сам должен понять, о чем идет речь.

Основное отличие:

  • Если процент начисляется один раз по окончании срока действия депозита, расчет будет произведен по простой формуле.
  • Если указана частота начисления процентов, вы имеете дело с капитализацией.

Самое выгодное для вкладчика:

  • депозит с капитализацией,
  • ежемесячное начисление процентов,
  • возможность пополнения счета.

По таким вкладам, правда, у банков редко бывают высокие процентные ставки. Но здесь уже каждый клиент должен сам искать более выгодное решение.

kreditkarti.ru

Формула простого процента: определение, сущность, пример расчёта

Процент – доля от вложенных в банк или взятых в кредитном учреждении денег. Если мы кладем деньги на депозит, то процент нам выплачивает банк, в качестве оплаты за пользование нашими денежными средствами. Обратная ситуация складывается, если кредит нужен нам. Тогда мы обязаны вернуть увеличенную на определенный процент сумму, заплатив банку за использование его денег.

В математике один процент – одна сотая часть числа. Говоря о банковском проценте, обычно подразумевают сумму денег, начисленную по определенным правилам и скопившуюся к конкретному сроку.

Простой и сложный процент, в чем отличие

Простые проценты это не сложные процентыВсе условия начисления процентов обязательно указываются в договоре между сторонами. Имеют значение такие факторы:

  • размер годовой процентной ставки,
  • капитализация процентов,
  • срок договора,
  • порядок выплаты процентов.

Кроме размера ставки, т.е количества начисленных за год процентов, на конечную сумму существенно влияет наличие или отсутствие по условиям договора капитализации процентов.

Капитализация процентов подразумевает собой процесс постоянного добавления начислений к основной сумме.

Это приводит к тому, что один и тот же процент, начисленный в первый период, всегда меньше, чем в последующий – ведь база для исчисления процента вырастает со временем. Такой процент называется сложным процентом.

Во вкладах и кредитах, где база для начисления процента не меняется со временем, всегда остается равной первоначальной сумме, расчет производится по формуле простых процентов.

Как рассчитать прибыль по вкладу с простым процентом

Вклад с простыми процентамиОбратите внимание, в банковском договоре прописывается годовая процентная ставка.

Имейте в виду, что проценты начисляются за каждый полный день нахождения денежных средств на депозите, а получать вы их можете помесячно, поквартально, или раз в год — в соответствии с условиями, прописанными в договоре.

Открыв счет первого марта, и закрыв его 31 мая, вы получите такой результат.

Второго марта вам уже причитается некоторый процент, и последний раз его начислят именно 31 мая.

Значит, фактически деньги лежат 92 дня, проценты начисляются за 91 день.

Учитывая, что проценты по договору начисляются соответственно количеству дней, можно вывести формулу, позволяющую вычислить доход по вкладу без капитализации процентов или увеличение задолженности по аналогичному кредиту в любой день.

Формула расчёта простых процентов

Как считать простой процент?Для расчета потребуется знать некоторые величины.

С — первоначальная сумма денег, вложенная в банк или взятая в кредит.

П — прибыль, представляющая собой начисленные проценты.

Д – количество дней, за который начисляется процент.

% — годовая процентная ставка, указанная в договоре.

365(или 366) – зависит от того, является ли год високосным, это число календарных дней в году.

Тогда за год нахождения денег С на депозите начисляется сумма (С/100)*%.

В пересчете на произвольное количество дней Д формула примет вид:

П = (С/100)*%*(Д/365)

Или, иначе, чтобы вычислить начисленные проценты, нужно сумму умножить на процентную ставку и на количество дней размещения вклада, а результат разделить на число 36500 (или 36600, когда год високосный).

Примеры расчета вклада с простым процентом

Простой вклад простой процентОпределим прибыль от депозита 100000 рублей при размещении на разный срок.

Процентная ставка в этом примере не меняется, она равна 10% годовых, год не високосный.

Вклад, размещенный на 91 день, принесет прибыль

П = 100000*10*91/36500= 2493,15 рублей.

Вклад, размещенный на 180 дней, принесет прибыль

П = 100000*10*180/36500= 4931,51 рубль.

Ровно 10000 рублей в виде начисленных процентов по этому вкладу мы получим, если в не високосном году положим сто тысяч рублей на 366 дней, в этом случае проценты будут начислены именно за 365 дней.

Когда по условиям вклада применяется формула простого процента, начисленные деньги аккумулируются на другом счете. Их можно снимать , не затрагивая основную сумму.

Формула простых процентов по кредиту

Берём деньги в кредит с простым процентомКредит, выданный с начислением простого процента, подразумевает, что каждый год к телу кредита прибавляется сумма, рассчитанная от первоначальной.

Например, на 2 года выдан кредит в 100000 рублей под 20% годовых.

За первый год сумма долга увеличивается на 100000*0,2 = 20000, и на второй год начисляется тот же процент.

Итого, через 2 года заемщик обязан вернуть 140000 рублей.

Формулы для определения параметров такого кредита таковы.

Если принять, что

К – взятые деньги,

% — годовая процентная ставка,

Д – количество дней пользования кредитом, то

Держим график платежей по кредитусумму, начисленную в виде процентов, можно вычислить по формуле

П = (К/100)*%*(Д/365)

общую задолженность к концу срока по формуле

С= К *( 1+ (%*Д)/36500)

Как правило, кредит с подобным алгоритмом начисления процентов краткосрочный, его срок ограничивается одним годом.

Кредиты и вклады с начислением процентов по простой формуле достаточно просты для понимания. Ими выгодно воспользоваться на достаточно короткий срок. В таких случаях лучше использовать простые проценты.

Банки по подобным депозитам всегда предлагают более высокую ставку.

Решая взять кредит на подобных условиях, нужно быть уверенным, что вы сможете выдержать график платежей.

Пожалуйста, поделитесь статьей, если она вам понравилась:

wealthchase.com

Как рассчитать простые и сложные проценты

 

Простые проценты применяются в ссудозаемных финансовых операциях продолжительностью до одного года. При использовании этой схемы начисление процентов осуществляется однократно с учетом неизменной базы расчета. Для исчисления применяет следующая формула:

FV=CFo×(1+n×r) ,

где  FV –будущая стоимость денежных средств,

r – процентная ставка,

n – срок начисления.

В том случае, когда продолжительность ссудозаемной операции меньше календарного года, то для расчета используется следующая формула:

FV=CFo×(1+t/T×r),

где t – продолжительность операции в днях,

Т – общее количество дней в году

При использовании сложной ставки годовой доход в каждом периоде рассчитывается не с исходной суммы вклада, а с общей накопленной суммы, включающей также начисленные ранее проценты. Таким образом, по мере начисления процентов происходит капитализация процентов.

Предположим, вкладчик разместил на депозит в банке 1000 рублей под 6% годовых. Определите, какая сумма будет накоплена за два года, если проценты начисляются по сложной схеме

Процентный доход = ставка процента×первоначальные вложения = 1000×0,06=60 рублей

Таким образом, к концу 1-го года на депозите будет накоплена сумма:

FV1=1000+60=1060 рублей=1000×(1+0,06)

Если не снимать деньги со счета, а оставить их до следующего года, то в конце 2-го года на счете будет накоплена сумма:

FV2=FV1 ×(1+r)=CVo×(1+r)×(1+r)=CVo×(1+r)^2 =1060×(1+0,06)=1000×(1+0,06)×(1+0,06)=1123,6 рублей

Для расчета сложных процентов применяется следующая формула:

FVn=CVo×FVIF(r,n)=CVo×(1+r)^n

Множитель наращения сложных процентов FVIF (r,n) показывает, чему будет равна одна денежная единица через n периодов при определенной процентной ставке r.

На практике очень часто для предварительной оценки эффективности процентной ставки рассчитывают период времени, необходимый для увеличения первоначального вклада вдвое.  Число периодов, за которое исходная сумма приблизительно удвоится, составляет 72/r. Например, при ставке 9 %  годовых первоначальный капитал удвоится приблизительно за 8 лет.

Сравнение простой и сложной схем начисления процентов

Для сравнения разных схем начисления процентов необходимо как множители наращения изменяются при различных значениях показателя n.

Если n = 1, то (1+n×r) = (1+r)^n .

Если n > 1, то (1+n×r) < (1+r)^n .

Если 0 < n <1, то (1+n×r) > (1+r)^n .

Таким образом, если срок ссуды составляет менее 1 года, то для кредитора выгодно использовать схему простых процентов. Если период начисления процентов равен 1 году, то результаты по обеим схемам совпадут.

В современной банковской практике иногда встречаются контакты, которые заключаются на срок, отличающийся от целого числа лет. В этом случае могут использоваться два варианта начисления:

1) по схеме сложных процентов

FVn=CFo×(1+r)^w+f;

2) по смешанной схеме

FVn=CFo×(1+r)^w×(1+f×r),

где w – целое число лет,

f – дробная часть года.

Предположим, вкладчик разместил на депозит 40000 рублей на срок 2 года 6 месяцев под 10% годовых, проценты начисляются ежегодно. Сколько получит вкладчик, если банк начисляет проценты по сложной или по смешанной схеме.

1) Расчет по сложной схеме начисления:

40000×(1+0,1)^2,5=50762, 3 руб.

2) Расчет по смешанной схеме начисления:

40000×(1+0,1)^2×(1+0,5×0,1)=50820 руб.

По некоторым вкладам начисление процентов происходит чаще, чем один раз в год. В таких случаях применяется следующая формула:

FVn=CFo ×(1+r/m)^m×n ,

где m –  количество начислений в году.

Определите будущую стоимость 7000 рублей, инвестированных на 3 года, под 7 % годовых, если проценты начисляются ежеквартально?

FV3=7000 ×(1+0,07/4)^3×4  = 8620,1 руб.

Обратите внимание, что при заключении договора на вклад в банке необходимо помнить, что чаще всего в документах не используется термины «простые» или «сложные» проценты. Для обозначения простой схемы начисления в договоре может быть указана фраза «проценты по вкладу начисляются в конце срока». А при использовании сложной схемы, в договоре может быть указано, что проценты начисляются раз в год, квартал или месяц.

www.kakprosto.ru

14. Расчет процентной ставки:

  1. Финансовая математика: предмет, принцип «временной стоимости денег», виды процентных ставок.

Финансовая математика – раздел количественного анализа финансовых операций, предметом которого является изучение функциональных зависимостей между параметрами коммерческих сделок или финансово-банковских операций и разработка на их основе методов решения финансовых задач определенного класса.

Фактор времени играет огромную роль и определяется принципом неравноценности денег, относящимся к разным моментам времени. Сегодняшние деньги ценнее будущих по следующим причинам:

  • во-первых, деньги можно продуктивно использовать во времени как приносящий доход финансовый актив, т.е. деньги могут быть инвестированы, и тем самым принести доход. Рубль в руке сегодня стоит больше, чем рубль, который должен быть получен завтра ввиду процентного дохода, который вы можете получить, положив его на сберегательный счет или проведя другую инвестиционную операцию;

  • во-вторых, инфляционные процессы ведут к обесцениванию денег во времени. Сегодня на рубль можно купить товара больше, чем завтра на этот же рубль, т.к. цены на товар повысятся;

  • в-третьих, неопределенность будущего и связанный с этим риск повышает ценность имеющихся денег. Сегодня рубль в руке уже есть и его можно израсходовать на потребление, а будет ли он завтра в руке, – еще вопрос.

Относительныйпоказатель, характеризующий интенсивность начисления процентов за единицу времени, –процентная ставка. Методика расчета проста: отношение суммы процентных денег, выплачивающихся за определенный период времени, к величине ссуды. Этот показатель выражается либо в долях единицы, либо в процентах. Таким образом, процентная ставка показывает, сколько денежных единиц должен заплатить заемщик за пользование в течение определенного периода времени 100 единицами первоначальной суммы долга.

Виды процентных ставок:

Простая процентная ставка применяется к одной и той же первоначальной сумме долга на протяжении всего срока ссуды, т.е. исходная база (денежная сумма) всегда одна и та же.

Сложная процентная ставка применяется к наращенной сумме долга, т.е. к сумме, увеличенной на величину начисленных за предыдущий период процентов, – таким образом, исходная база постоянно увеличивается.

Фиксированная процентная ставка – ставка, зафиксированная в виде определенного числа в финансовых контрактах.

Постоянная процентная ставка – неизменная на протяжении всего периода ссуды.

Переменная процентная ставка – дискретно изменяющаяся во времени, но имеющая конкретную числовую характеристику.

Плавающаяпроцентная ставка – привязанная к определенной величине, изменяющейся во времени, включая надбавку к ней (маржу), которая определяется целым рядом условий (сроком операции и т.п.). Основу процентной ставки составляет базовая ставка, которая является начальной величиной.

  1. Схема и основные параметры кредитной операции. Простые проценты при краткосрочных ссудах. Три варианта расчета простых процентов.

Основные параметрыпростой кредитной операции:

P– первоначальная сумма денег,S– наращенная сумма,I– плата за кредит (общая сумма процентных денег).

P________________S

T– период начисления

i = I/P = (S-P)/P– процентная ставка простейшей кредитной сделки.

Простые ставкипроцентов применяются обычно в краткосрочных финансовых операциях, когда интервал начисления совпадает с периодом начисления (срок менее года), или когда после каждого интервала начисления кредитору выплачиваются проценты.

Расчет простых процентов может быть произведен одним из трех возможных способов:

  1. Обыкновенные проценты с приближенным числом дней ссуды, или, как часто называют, "германская практика расчета", когда продолжительность года условно принимается за 360 дней, а целого месяца – за 30 дней. Этот способ обычно используется в Германии, Дании, Швеции.

  2. Обыкновенные проценты с точным числом дней ссуды, или "французская практика расчета", когда продолжительность года условно принимается за 360 дней, а продолжительность ссуды рассчитывается точно по календарю. Этот способ имеет распространение во Франции, Бельгии, Испании, Швейцарии.

  3. Точные проценты с точным числом дней ссуды, или "английская практика расчета", когда продолжительность года и продолжительность ссуды берутся точно по календарю. Этот способ применяется в Португалии, Англии, США.

Чисто формально возможен и четвертый вариант: точные проценты с приближенным числом дней ссуды, – но он лишен экономического смысла.

Система

Число дней в месяце, d

Число дней

в году

День приема /

выдачи вклада

Неполный месяц

Полный месяц

А) Германия

Факт

30

360

-1

Б) Англия

Факт

Факт

Факт

-1

В) Франция

Факт

Факт

365

-1

  1. Простые проценты. Расчет наращенной суммы, срока кредита, величины процентной ставки. Расчет наращенной суммы при простых переменных ставках.

Простые ставкипроцентов применяются обычно в краткосрочных финансовых операциях, когда интервал начисления совпадает с периодом начисления (срок менее года), или когда после каждого интервала начисления кредитору выплачиваются проценты.

Рассмотрим процесс наращения (accumulation), т.е. определения денежной суммы в будущем, исходя из заданной суммы сейчас. Экономический смысл операции наращения состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Здесь идет движение денежного потока от настоящего к будущему.

При использовании простых ставок процентов проценты (процентные деньги) определяются исходя из первоначальной суммы долга. Схема простых процентов предполагает неизменность базы, с которой происходит начисление процентов. Из определения процентов нетрудно заметить, что проценты представляют собой, по сути, абсолютные приросты:

I = S-P.

Поскольку база для их начисления является постоянной, то за ряд лет общий абсолютный прирост составит их сумму или произведение абсолютных приростов на количество лет ссуды:

I = (S-P) n = [(S-P) / P • P] n = i • P • n,

где i = (S- P) / P - процентная ставка.

Таким образом, размер ожидаемого дохода зависит от трех факторов: от величины инвестированной суммы, от уровня процентной ставки и от срока финансовой операции.

Тогда наращенную сумму по схеме простых процентов можно будет определять следующим образом:

S = P + I = P + i • P • n = P (1 + i • n) = P • kн.,

где kн – коэффициент (множитель) наращения простых процентов.

Данная формула называется "формулой простых процентов". Для облегчения финансовых расчетов можно использовать финансовые таблицы, содержащие коэффициенты наращения по простым процентам.

Для расчета процентовиспользуется методика расчета с вычислением процентных чисел: каждый раз, когда сумма на счете изменяется, производится расчет "процентного числа" за период, в течение которого сумма на счете была неизменной. Процентное число вычисляется по формуле:

Процентное число = (Сумма на счете • Длительность периода в днях) / 100 =

= (P • t) / 100

Для определения суммы процентов за весь срок их начисления все "процентные числа" складываются, и их сумма делится на постоянный делитель, который носит название "процентный ключ" или дивизор, определяемый отношением количества дней в году к годовой процентной ставке:

I = Σ Процентных чисел : Постоянный делитель, где

Постоянный делитель = Продолжительность года в днях / Годовая ставка процентов = T / i

Проценты, вычисляемые с использованием дивизора, рассчитанного исходя из 365 дней в году, называются точными и будут меньше, чем проценты обыкновенные (коммерческие), где количество дней в году принято за 360.

При простых переменныхставках формула наращения принимает вид:

S = P(1+n1i1+n2i2+…) = P(1+Σntit), где

it– ставка простых процентов в периоде с номеромt,

nt– продолжительность периодаt– периода начисления по ставкеit.

  1. Два метода дисконтирования. Расчет текущей стоимости, используя: ставку наращения, учетную ставку.

Процесс начисления и удержания процентов вперед, до наступления срока погашения долга, называют учетом, а сами проценты в виде разности наращенной и первоначальной сумм долгадисконтом(discount): D = S-P

Термин дисконтирование в широком смысле означает определение значения стоимостной величины на некоторый момент времени при условии, что в будущем она составит заданную величину.

Нередко такой расчет называют приведением стоимостного показателя к заданному моменту времени, а величину P называют приведенной (современной или текущей) величиной S. Таким образом, дисконтирование – приведение будущих денег к текущему моменту времени, и при этом не имеет значения, имела ли место в действительности данная финансовая операция или нет, а также независимо от того, можно ли считать дисконтируемую сумму буквально наращенной.

Именно дисконтирование позволяет учитывать в стоимостных расчетах фактор времени, поскольку дает сегодняшнюю оценку суммы, которая будет получена в будущем. Привести стоимость денег можно к любому моменту времени, а не обязательно к началу финансовой операции.

Исходя из методики начисления процентов, применяют два вида дисконтирования:

Различие в ставке процентов и учетной ставке заключается в различии базы для начислений процентов:

i = (S-P) / P

d = (S-P) / Sn

Учетная ставка более жестко отражает временной фактор, чем процентная ставка. Если сравнить между собой математическое и банковское дисконтирование в случае, когда процентная и учетная ставка равны по своей величине, то видно, что приведенная величина по процентной ставке больше приведенной величины по учетной ставке.

Современная величина и процентная ставка, по которой проводится дисконтирование, находятся в обратной зависимости: чем выше процентная ставка, тем при прочих равных условиях меньше современная величина.

В той же обратной зависимости находятся современная величина и срок финансовой операции: чем выше срок финансовой операции, тем меньше при прочих равных условиях современная величина.

Банковский учет – второй вид дисконтирования, при котором, исходя из известной суммы в будущем, определяют сумму в данный момент времени, удерживая дисконт.

Операция учета (учет векселей) заключается в том, что банк или другое финансовое учреждение до наступления платежа по векселю покупает его у предъявителя по цене ниже суммы векселя, т.е. с дисконтом. Сумма, которую получает векселедержатель при досрочном учете векселя, называется дисконтированной величиной векселя. При этом банк удерживает в свою пользу дисконт. Подобным образом (с дисконтом) государство продает большинство своих ценных бумаг.

Для расчета дисконта используется простая учетная ставка:

D = S-P = S • n • d = S • t / T • d ,

где n – прод-сть срока в годах от момента учета до даты выплаты известной суммы в будущем.

Отсюда: P = S - S • n • d = S • (1 - n • d),

где (1 - n • d) – дисконтный множитель.

Очевидно, что чем выше значение учетной ставки, тем больше дисконт. Дисконтирование по простой учетной ставке чаще всего производится по французской практике начисления процентов, т.е. когда временная база принимается за 360 дней, а число дней в периоде берется точным.

В том случае, когда учету подлежит долговое обязательство, по которому предусматривается начисление процентов, происходит совмещение начисления процентов по процентной ставке и дисконтирования по учетной ставке: P2 = P1 • (1 + n1 • i ) • (1 - n2 • d ),

где P1 – первоначальная сумма долга;

P2 – сумма, получаемая при учете обязательства;

n1 – общий срок платежного обязательства;

n2– срок от момента учета до погашения.

  1. Расчет суммы, выплачиваемой при учете обязательств с начислением простых процентов.

Когда учету подлежит долговое обязательство, по которому предусматривается начисление простых процентов, происходит совмещение начисления процентов по процентной ставке и дисконтирования по учетной ставке: P2 = P1 • (1 + n1 • i ) • (1 - n2 • d ),

где P1 – первоначальная сумма долга;

P2 – сумма, получаемая при учете обязательства;

n1 – общий срок платежного обязательства;

n2– срок от момента учета до погашения.

Пример:

Платежное обязательство уплатить через 100 дней 2 млн. руб. с процентами, начисленными по ставке простых процентов i=20% годовых, было учтено за 40 дней до срока погашения по учетной ставке d=15%. Требуется определить сумму, получаемую при учете.

Решение:

Р2 = 2(1+100/365*0,2)(1-40/360*0,15)=2,074 млн. руб

При наращивании использовалась временная база 365 дней, а при дисконтировании – 360.

  1. Расчет удвоения суммы для простых и сложных процентов.

В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет в Nраз пр иданной процентной ставке. Ответ можно получить, приравняв множитель наращения величинеN:

а) для простых процентов (1+niпр.) =N, откудаn= (N-1) /iпр.

б) для сложных процентов (1+iсл.)n=N, откудаn=lnN/ln(1+iсл.)

Особенно часто используется N=2, тогда эти формулы называются формулами удвоения и принимают следующий вид:

а) для простых процентов n = 1 / iпр,

б) для сложных процентов n = ln2 / ln(1+iсл.)

Если учесть , что ln2=0,7, аln(1+iсл.)=i, тоn=0,7/i

Важно учесть следующее:

  1. Одинаковое значение ставок простых и сложных процентов приводит к совершенно различным результатам.

  2. При малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

Пример:Рассчитать, за сколько лет долг увеличится вдвое при ставке простых и сложных процентов 3%. Результаты сравнить.

Решение:

а) при простых процентах: n= 1/iпр = 1/0,03 = 33 1/3 года;

б) при сложных процентах и точной формуле:

n=ln2/ln(1+iсл.) = 0.693147/ln(1+0.03) = 0.693147/0.0295588 = 23.45 года;

в) при сложных процентах и приближенной формуле:

n = 0.7/i = 0.7/0.03 = 23.33 года

  1. Расчет начисления сложных процентов при дробном числе лет.

Достаточно часто финансовые контракты заключаются на период, отличающийся от целого числа лет. В случае, когда срок финансовой операции выражен дробным числом лет, начисление процентов возможно с использованием двух методов:

S = P • (1 + i)n,

n = a + b,

где n – период сделки;

a – целое число лет;

b – дробная часть года.

  • смешанный метод расчета предполагает для целого числа лет периода начисления процентов использовать формулу сложных процентов, а для дробной части года – формулу простых процентов:

S = P • (1 + i)a • (1 + bi).

Поскольку b < 1, то (1 + bi) > (1 + i)a, следовательно, наращенная сумма будет больше при использовании смешанной схемы.

• в ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т.е. S = P • (1 + i)a

Пример. В банке получен кредит под 9,5% годовых в размере 250 тыс. долларов со сроком погашения через два года и 9 месяцев. Определить сумму, которую необходимо вернуть по истечении срока займа двумя способами, учитывая, что банк использует германскую практику начисления процентов.

Решение:

а) Общий метод:

S = P • (1 + i)n = 250 • (1 + 0,095)2,9 = 320,87 тыс. долларов.

б) Смешанный метод:

S = P • (1 + i)a • (1 + bi) =

= 250 • (1 + 0,095)2 • (1 + 270/360 • 0,095) =

= 321,11 тыс. долларов.

Таким образом, по общему методу проценты по кредиту составят

I = S - P = 320,87 - 250,00 = 70,84 тыс. долларов,

а по смешанному методу

I = S - P = 321,11 - 250,00 = 71,11 тыс. долларов.

Как видно, смешанная схема более выгодна кредитору.

  1. Расчет наращения сложных процентов по номинальной ставке.

Период начисления по сложным процентам не всегда равен году, однако в условиях финансовой операции указывается не ставка за период, а годовая ставка с указанием периода начисления – номинальная ставка (j).

Номинальная ставка (nominal rate) – годовая ставка процентов, исходя из которой определяется величина ставки процентов в каждом периоде начисления, при начислении сложных процентов несколько раз в год.

Эта ставка

  • во-первых, не отражает реальной эффективности сделки;

  • во-вторых, не может быть использована для сопоставлений.

Если начисление процентов будет производиться mраз в год, а срок долга –nлет, то общее количество периодов начисления за весь срок финансовой операции составитN = n • m

Отсюда формулу сложных процентов можно записать в следующем виде:

S = P • (1 + j / m)N = P • (1 + j /m)mn ,

где j – номинальная годовая ставка процентов.

Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами:

а) по формуле сложных процентов S = P • (1 + j / m)N/r

где N/r - число периодов начисления (возможно, дробное)

б) по смешанной формуле S = P • (1 + j / m)a *(1+bj / m)

Пример: Сумма в размере 2000 дол. дана в долг на 2 года по ставке процента равной 10% годовых. Определить проценты и сумму, подлежащую возврату, введя ежеквартальное начисление процентов.

Решение:

Количество периодов начисления:

N = m • n = 4 • 2 = 8

Наращенная сумма составит:

S = P • (1 + j / m)mn = 2'000 • (1 + 0,1 / 4 )8 = 2'436,81 руб.

Сумма начисленных процентов:

I = S - P = 2'436,81 - 2'000 = 436,81 руб.

Таким образом, через два года на счете будет находиться сумма в размере 2'436,81 руб., из которой 2'000 руб. является первоначальной суммой, размещенной на счете, а 436,81 руб. – сумма начисленных процентов.

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.

Применение схемы сложных процентов целесообразно в тех случаях, когда:

  • проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов;

  • срок ссуды более года.

  1. Дисконтирование: по сложной годовой процентной ставке, по сложной годовой учетной ставке.

Сложные ставки процентовучитывают возможность реинвестирования процентов, так как в этом случае наращение производится по формуле не арифметической, а геометрической прогрессии, первым членом которой является начальная суммаP, а знаменатель равен (1 +i)

P, P(1 + i), P(1 + i)2, P(1 + i)3, …, P(1 + i)n,

где число лет ссуды nменьше числа членов прогрессииkна 1 (n =k– 1).

Наращенная стоимость (последний член прогрессии) находится по формуле

,

где (1 + i)n– множитель наращения декурсивных сложных процентов.

Более широко распространено математическое дисконтированиепо сложной процентной ставкеi. Дляm= 1 получаем

,

где 1/(1 + i)n– дисконтный множитель математического дисконтирования по сложной процентной ставке.

При неоднократном начислении процентов в течение года формула математического дисконтирования принимает вид

,

где j– номинальная сложная процентная ставка; 1/– дисконтный множитель математического дисконтирования по сложной номинальной процентной ставке.

Для дисконтирования при сложной процентной ставке - при начислении процентов один раз в году - используется формула:

А при начислении процентов m раз в году формула:

.

При учете вексель выполняет две функции: коммерческого кредита и средства платежа.

Абсолютная величина дисконта определяется как разность между номиналом векселя и его современной стоимостью на момент проведения операции. При этом дисконтирование осуществляется по учетной ставке d, устанавливаемой банком: где

t - число дней до погашения;

d – учетная ставка банка;

P - сумма, уплаченная владельцу при учете векселя;

N - номинал;

Современная стоимость PV (ценные обязательства Р) при учете векселя по формуле:

Суть данного метода заключается в том, что проценты начисляются на сумму, подлежащую уплате в конце срока операции. При этом применяется учетная ставка d.

При дисконтировании по учетной ставке чаще всего используют временную базу 360/360 или 360/365. Используемую при этом норму приведения называют антисипативной ставкой процентов[2]. Учетная ставка d иногда применяется и

для наращивания по простым процентам. Необходимость в таком наращивании

возникает при определении будущей суммы контракта, например, общей суммы

векселя. Формула определения будущей величины в этом случае имеет вид:

Пример 1:

Простой вексель на сумму 100 000 с оплатой через 90 дней учитывается в

банке за 60 дней до погашения. Учетная ставка банка 15 %. Определить

величину дисконта в пользу банка и сумму, полученную владельцем векселя.

Disc = (100000 * 60 * 0.15) / 360 = 2500;

Соответственно, владелец векселя получит величину PV:

PV=100000 – 2500 = 97500;

Предположим, что в рассматриваемом примере владелец векселя решил

учесть вексель немедленно после получения, тогда:

Disc = (100000 * 90 * 0.15) / 360 = 3750;

PV = 100000 – 3750 = 96250;

Как следует из полученного результата, при неизменном значении ставки

d чем раньше производится учет векселя, тем больше будет величина дисконта

в пользу банка и тем меньшую сумму получит владелец.

  1. Дисконтирование: по сложной номинальной процентной ставке m раз в году, по сложной учетной ставке m раз в году.

  1. Непрерывные проценты: наращение, дисконтирование, связь дискретных и непрерывных процентных ставок.

Для непрерывных процентов не существует различий между процентной и учетной ставками, поскольку сила роста – универсальный показатель. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции).

Непрерывное начисление процентов используется при анализе сложных финансовых задач, например, обоснование и выбор инвестиционных решений. Оценивая работу финансового учреждения, где платежи за период поступают многократно, целесообразно предполагать, что наращенная сумма непрерывно меняется во времени и применять непрерывное начисление процентов.

Все ситуации, которые мы до сих пор рассматривали, относились к дискретным процентам, поскольку их начисление осуществляется за фиксированные промежутки времени (год, квартал, месяц, день, час). Но на практике нередко встречаются случаи, когда проценты начисляются непрерывно, за сколь угодно малый промежуток времени. Если бы проценты начислялись ежедневно, то годовой коэффициент (множитель) наращения выглядел так:

kн = (1 + j / m)m = (1 + j / 365)365

Но поскольку проценты начисляются непрерывно, то m стремится к бесконечности, а коэффициент (множитель) наращения стремится к e j:

где e ≈ 2,718281, называется числом Эйлера и является одной из важнейших постоянных математического анализа.

Отсюда можно записать формулу наращенной суммы для n лет:

FV = PV • e j • n = P • eδ • n

Ставку непрерывных процентов называют силой роста (force of interest) и обозначают символом δ, в отличие от ставки дискретных процентов ( j ).

Пример. Кредит в размере на 100 тыс. долларов получен сроком на 3 года под 8% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться:

а) один раз в год;

б) ежедневно;

в) непрерывно.

Решение:

Используем формулы дискретных и непрерывных процентов:

начисление один раз в год

FV = 100'000 • (1 + 0,08)3 = 125'971,2 долларов;

ежедневное начисление процентов

FV = 100'000 • (1 + 0,08 / 365)365 • 3 = 127'121,6 долларов

непрерывное начисление процентов

FV = 100'000 • e0,08 • 3 = 127'124,9 долларов.

  1. Расчет срока кредита:

- при наращении по сложной годовой ставке %,

- при наращении по номинальной ставке % m раз в году,

- при наращении по постоянной силе роста.

В любой простейшей финансовой операции всегда присутствуют четыре величины: современная величина (PV), наращенная или будущая величина (FV), процентная ставка (i) и время (n).

Иногда при разработке условий финансовой сделки или ее анализе возникает необходимость решения задач, связанных с определением отсутствующих параметров, таких как срок финансовой операции или уровень процентной ставки.

Как правило, в финансовых контрактах обязательно фиксируются сроки, даты, периоды начисления процентов, поскольку фактор времени в финансово-коммерческих расчетах играет важную роль. Однако бывают ситуации, когда срок финансовой операции прямо в условиях финансовой сделки не оговорен, или когда данный параметр определяется при разработке условий финансовой операции.

Обычно срок финансовой операции определяют в тех случаях, когда известна процентная ставка и величина процентов.

Если срок определяется в годах, то

n = (FV - PV) : (PV • i),

а если срок сделки необходимо определить в днях, то появляется временная база в качестве сомножителя:

t = [(FV - PV) : (PV • i)] • T.

Так же как для простых процентов, для сложных процентов необходимо иметь формулы, позволяющие определить недостающие параметры финансовой операции:

n = [log (FV / PV)] / [log (1 + i)] = [log (FV / PV) ] / [log(1 + j / m)m];

.

Пример. Что выгоднее: увеличение вклада в три раза за три года или 46% годовых?

Решение:

Такого рода задачи приходится решать не только лицам, занимающимся финансовой работой, но и населению, когда решается вопрос о том, куда выгоднее вложить деньги. В таких случаях решение сводится к определению процентной ставки:

Таким образом, увеличение вклада за три года в три раза эквивалентно годовой процентной ставке в 44,3%, поэтому размещение денег под 46% годовых будет более выгодно.

  1. Расчет срока кредита:

- при дисконтировании по сложной годовой учетной ставке,

- при дисконтировании по номинальной учетной ставке m раз в году.

- при наращении по сложной годовой ставке %,

- при наращении по номинальной ставке % m раз в году,

- при наращении по постоянной силе роста.

15. Расчет процентной ставки:

- при дисконтировании по сложной годовой учетной ставке,

- при дисконтировании по номинальной учетной ставке m раз в году.

  1. Эквивалентность простых процентных и простых учетных ставок.

Эквивалентные процентные ставки – ставки разного вида, применение которых при одинаковых начальных условиях дает одинаковые финансовые результаты.

Процедура нахождения эквивалентных ставок:

  1. Выбирается величина, которую легко рассчитать при использовании различных процентных ставок, обычно FV;

  2. Приравниваются 2 выражения, то есть составляют уравнение эквивалентности;

  3. Преобразуя, выражают одну процентную ставку через другую.

П

ример:

iкв=3%;

iгод-?

а) простые ставки процента, уравнение эквивалентности:

б) сложные ставки процента, уравнение эквивалентности:

Достаточно часто в практике возникает ситуация, когда необходимо произвести между собой сравнение по выгодности условий различных финансовых операций и коммерческих сделок. Условия финансово-коммерческих операций могут быть весьма разнообразными и напрямую несопоставимыми. Для сопоставления альтернативных вариантов ставки, используемые в условиях контрактов, приводят к единообразному показателю.

Различные финансовые схемы можно считать эквивалентными в том случае, если они приводят к одному и тому же финансовому результату.

Эквивалентная процентная ставка – это ставка, которая для рассматриваемой финансовой операции даст точно такой же денежный результат (наращенную сумму), что и применяемая в этой операции ставка.

Классическим примером эквивалентности являются номинальная и эффективная ставка процентов:

i = (1 + j / m)m - 1.

j = m[(1 + i)1 / m - 1].

Эффективная ставка измеряет тот относительный доход, который может быть получен в целом за год, т.е. совершенно безразлично – применять ли ставку j при начислении процентов m раз в год или годовую ставку i, – и та, и другая ставки эквивалентны в финансовом отношении.

Поэтому совершенно не имеет значения, какую из приведенных ставок указывать в финансовых условиях, поскольку использование их дает одну и ту же наращенную сумму. В США в практических расчетах применяют номинальную ставку, а в европейских странах предпочитают эффективную ставку процентов.

Если две номинальные ставки определяют одну и ту же эффективную ставку процентов, то они называются эквивалентными.

Пример. Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 25%?

Решение:

Находим номинальную ставку для полугодового начисления процентов:

j = m[(1 + i)1 / m - 1] = 2[(1 + 0,25)1/2 - 1] = 0,23607.

Находим номинальную ставку для ежемесячного начисления процентов:

j = m[(1 + i)1 / m - 1] = 4[(1 + 0,25)1/12 - 1] = 0,22523.

Таким образом, номинальные ставки 23,61% с полугодовым начислением процентов и 22,52% с ежемесячным начислением процентов являются эквивалентными.

При выводе равенств, связывающих эквивалентные ставки, приравниваются друг к другу множители наращения, что дает возможность использовать формулы эквивалентности простых и сложных ставок:

простая процентная ставка:

i = [(1 + j / m)m • n - 1] / n;

сложная процентная ставка:

.

  1. Эквивалентность простых и сложных % ставок.

studfiles.net

1.Теория. Финансовая математика.

Формулы простых и сложных процентов

Основной задачей кредитных учреждений является привлечение средств с целью их концентрации и перераспределения в виде кредитов или финансовых ресурсов. Кредитные учреждения привлекают средства (депозиты) юридических и физических лиц с целью их дальнейшего размещения в виде кредитов за определенную плату. При этом плата за привлеченные ресурсы несколько ниже платы за размещенные. Плата за ресурсы устанавливается в процентах. Проценты по депозитам ниже, чем проценты по кредитам. Разница между процентной ставкой по кредитам и процентной ставкой по депозитам называется маржей. Маржа служит источником дохода кредитного учреждения.

Процентная ставка банка чрезвычайно важна как с позиций привлечения ресурсов, так и с позиций их размещения, поэтому регулирование процентной ставки осуществляется государством посредством установки учетной ставки центрального банка.

Основная цель инвестиций в кредитные институты состоит в получении процентного дохода (процентов). Процентный доход определяется на основе процентной ставки. Процентная ставка в финансовой практике устанавливается на год. В отдельных случаях ставка может быть установлена на более другой период.

На практике применяются два подхода к оценке процентного дохода – простые и сложные проценты.

При применении простых процентов доход рассчитывается от первоначальной суммы инвестиций не зависимо от срока вложения.

При применении сложных процентов накопленная сумма процентов добавляется во вклад (реинвестируется, капитализируется) по окончании очередного периода начислений.

Первоначальная сумма и полученные проценты в совокупности называются наращенной суммой.

Так, если банковская ставка равна 10%, а первоначальная сумма 100 руб., то накопленная сумма за пять лет при применении простых и сложных процентов будет иметь вид:

Таблица 1. Наращенная сумма с использованием простых и сложных процентов.

 

На начало

1-й год

2-й год

3-й год

4-й год

5-й год

Простые проценты

100

110

120

130

140

150

Сложные проценты

100

110

121

133

146

161

 

Если обозначить:

  - процентная ставка;

Si – накопленная сумма к концу i-го года,

Тогда для простых процентов сумма по годам равна соответственно

Snt = (1 + n *  ) S0                                                                     (1)

Для сложных процентов

Snt = (1 +  )n S0                                                                          (2)

Пример 1.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать наращенную сумму если проценты:

а) простые

б) сложные.

Решение 1.

По формуле простых процентов

Sn=(1+3*0.12)*50 000 = 68000 руб.

По формуле сложных процентов

Sn=(1+0.12)3*50 000 = 70246 руб.

В банковской практике проценты могут начисляться чаще, чем 1 раз в год. При этом банковская ставка обычно устанавливается в пересчете на год. Формула сложных процентов будет иметь вид:

Snt = (1 + /t )n*t S0                                                                     (3)

где t – число реинвестиций процентов в году.

Пример 2.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать наращенную сумму, если проценты начисляются ежеквартально.

Решение 2.

По формуле сложных процентов

Sn = (1+0.12/4)3*4*50 000 = 1.0312*50 000 = 71288 руб.

 Как следует из примеров 1 и 2, наращенная сумма будет возрастать тем быстрее, чем чаще начисляются проценты. Существует предел

где е – основание натурального логарифма.

Известно, что при малом значении α справедливо примерное равенство:

Отсюда следует, что при малых значениях n и α можно для расчетов применять формулу простых процентов. На практике все расчеты по депозитам и кредитам сроком менее года осуществляются по формуле простых процентов. Наращенная сумма за короткий период определяется по формуле:

( 4)

Где nд – число дней депозита, 360 – число дней в году.

Эффективная ставка

Из вышесказанного следует, что при разных условиях начисления процентов вклады с одинаковыми процентными ставками позволяют получить разный доход. Отсюда вытекает проблема эквивалентных ставок. Ставки позволяющие получить одинаковый доход при разных условиях начисления процентов называются эквивалентными. Условие эквивалентности можно выразить уравнением

если

где α1и t1 - процентная ставка и число реинвестиций в году по первому варианту, α2и t2 - процентная ставка и число реинвестиций в году по второму варианту.

Если один из вариантов предполагает начисление 1 раз в году, то условие эквивалентности примет вид

 тогда

 Ставка, эквивалентная ставке с начислением процентов в конце года называется эффективной. Эффективная ставка выше номинальной. Эффективная ставка рассчитывается по формуле:

(5)

где αн – номинальная ставка, t – число реинвестиций в году.

Пример 3.

Банк предлагает два варианта депозита

1) под 120% с начислением процентов в конце года

2) под 100% с начислением процентов в конце каждого квартала.

Определить более выгодный вариант размещения депозитов на один год.

Более выгодным считается тот вариант, при котором наращенная за год сумма будет больше. Для оценки вариантов начальную сумму примем равную 100 руб.

По первому варианту наращенная сумма будет равна

(1+1,2)*100 руб. = 220 руб.

По второму варианту проценты начисляются ежеквартально. По окончании первого квартала наращенная сумма равна

(1+1,0/4)*100 руб. = 125 руб.

По окончании 2-го квартала

(1+1,0/4)*125 руб. = 156 руб. или (1+1,0/4)2*100 руб. = 156 руб.

За год наращенная сумма равна:

(1+1,0/4)4*100 руб. = 244 руб.

Как следует из расчетов второй вариант значительно выгоднее (244>220). Правда, только при условии применения сложных процентов. Однако, если по условия вклада проценты начисляются ежеквартально, то их можно "превратить" в сложные самостоятельно осуществив депозит в банк.

В банке появился новый вид вкладов с ежемесячным начислением процентов по ставке 12% в месяц с минимальной суммой вклада 300 руб. Проценты на проценты не начислялись, однако многие граждане превращали данный вклад во вклад со сложными процентами. Для этого достаточно было раз в месяц приходить в банк, снимать проценты и осуществлять новый вклад.

Эффективная ставка рассчитывается по формуле:

 

 Это значит, что наращенная сумма будет одинакова по вкладам сроком 1 год под 144% и по вкладу сроком 1 год, при ставке 100% при условии ежеквартального начисления процентов.

Пример 4.

Банк принимает депозиты по ставке 50% с начислением процентов ежеквартально. Определить эффективную ставку.

Пример 5.

Процентная ставка 50% с начислением процентов в конце срока. Рассчитать эквивалентную ставку с начислением процентов раз в 6 месяцев.

Решение.

Решить данную задачу можно двумя способами

1) на основе формулы эквивалентности

Отсюда

2) используя формулу эффективной ставки.

Отсюда

Оценка потока платежей

В практике финансовых расчетов применяется понятие настоящая стоимость будущих платежей. Поток платежей может быть равномерным или неравномерным. Равномерный поток называется финансовой рентой или аннуитетом. В задачу оценки потока платежей входит определение его текущей стоимости. Текущая оценка осуществляется на основе сравнения будущих платежей с вкладом в банк. Цена ренты представляет собой сумму, которую необходимо вложить в банк под определенный процент, чтобы обеспечить те же платежи и в те же сроки, которые обеспечивает рента.

Эта задача обратная определению наращенной стоимости. Так, если в качестве примера ренты принять бескупонную облигацию номиналом Н и сроком до погашения n лет, то ее расчетная цена может быть определена по формуле

 ,

Для потока платежей с неравными выплатами текущая стоимость выплат равна:

Например:

У гражданина двое детей в возрасте 10 и 15 лет. Он желает каждому выплатить к 18-летию по 20 тыс. руб. Сколько необходимо вложить в банк, чтобы обеспечить данные выплаты, если банк выплачивает 10% годовых.

Решение

Время до 1-й выплаты 3 года, до 2-й – 8 лет. Начальная сумма вклада равна:

 Решение задач №1- 12 производим с помощью Excel.

studfiles.net

виды и формулы расчета суммы кредита

Наверняка каждый, кто когда-то брал кредит или становился вкладчиком банка, вначале сталкивался с понятием «банковская процентная ставка»:

Процентная ставка — это сумма, выраженная в процентном измерении, которая устанавливается банком за пользование кредитом и выплачивается за определенный период — год, квартал или месяц.

  • Если деньги кладутся на текущий банковский счет или депозит, вкладчик является кредитором банка, а сам банк — заемщиком.
  • Если клиент занимает деньги у банка (берет кредит), то кредитором теперь является банк, а клиент — заемщиков.

Знание этих простых истин избавит от комплексов, которые населению внушают банки, разъясняя им многокилометровые формулы расчетов процентов с биномами Ньютона, факториалами, сложными корнями, степенями и прочей математической лабудой сложностью.

Содержание страницы

Процентная ставка определяет цену денег

В любом из этих двух случаев процентная ставка имеет оценивающее денежное измерение: какими будут сбережения вкладчика или банка через месяц, год или несколько лет.

Процентная ставка по депозитам вкладчиков обычно ниже ставки по банковским кредитам. В этом заключен основной заработок банковских и финансовых учреждений — взять деньги по меньшей цене и распорядиться ими, переодолжив по более высокой.

Для вкладчиков же депозит — это в основном способ сохранения денежных средств, а не заработка, так депозитные ставки сейчас низки, а в некоторых банках Европы они даже отрицательные.

Базовая процентная ставка — это наименьший кредитный процент, предоставляемый крупным надежным кампаниям и клиентам. БПС обычно устанавливается центральными банками.

Историческая справка о ставках

Исторические размахи ставок впечатляют:

  • В Германии, например, базовая процентная ставка колебалась в диапазоне от 90% до 2% в периоды 1920 — 2000 гг.
  • В Великобритании — 0,5 — 15% в 1989 — 2009 гг.
  • В США ставка ФРС США в 1954 — 2008 гг варьировала между 19% и 0.25%.
  • В Зимбабве в период гиперинфляции 2007 г. кредитная ставка доходила до 800%.

Виды ставок

Фиксированные и плавающие ставки

Процентные ставки бывают:

  • Фиксированными — неизменными в течение определенного срока.
  • Плавающими — изменяемыми и периодически пересматриваемыми банком, в зависимости от некоторых показателей.

Так, классическим показателем является LIBOR — средняя ставка лондонской межбанковской кредитной биржи.

Многие банки определяют плавающую ставку по формуле: LIBOR + n, где n — фиксированная ставка конкретного банка.

Банки России могут ориентироваться на независимую индикативную ставку, например, MosPrime Rate.

Кредитополучателю на растущем рынке кредитных ставок выгодней брать кредит по фиксированной процентной ставке.

Декурсивные и антисипативные ставки

По времени выплаты ставки бывают:

  • декурсивными — выплачиваемыми в конце вместе с возвратом кредита;
  • антисипативными — выплачиваемыми авансом при предоставлении кредита.

Декурсивные ставки выгодны для заемщиков, а антисипативные — для кредиторов, но банки обычно действуют в своих интересах:

  • проценты на депозитах рассчитываются декурсивным способом,
  • кредитные — антисипативным: при выдаче кредита сразу определяется суммарный процент, который затем делится на количество периодов (обычно месяцев).

Декурсивный и антисипативный способы используются при подсчете простых и сложных процентов, когда первоначальная сумма капитала в каждом отчетном периоде меняется.

  • Декурсивный способ удобно использовать при плавающих ставках.
  • Антисипативный способ удобен в периоды нестабильности в качестве гаранта выплаты сложных процентов.

Декурсивную ставку еще называют ссудным процентом, так как она определяет отношение полученного дохода (процентов) к начальной денежной сумме.

Как рассчитать ссудный процент и сумму наращивания

Формула определения ссудного процента:

i = I/P (1), где:

  • i (income) — ссудный процент;
  • I — сумма всех начисленных за отчетный период процентов;
  • P — первоначальная денежная сумма (present value).

Сумма наращивания F (future value) определяется по формуле:

F = P + i*n*P = P*(1 + i*n). (2)

Здесь n — количество расчетных периодов.

Отношение F/P - это коэффициент наращивания kn.

kn = 1 + i*n. (3)

Подсчет суммы наращивания F называется компаундингом.

Компаундинг на примере расчета
  1. Произведем компаундинг банковского кредита размером в 1 млн руб., выданного под 12% годовых (простой ставке), сроком на 10 лет по формуле (2)

F = 1 000 000 *(1 + 0,12 *10) = 2 200 000 руб.

Первоначальная денежная сумма, выданная банком в долгосрочный десятилетний кредит, часто применяемый в ипотеке, наросла на 1 200 000 руб., то есть более, чем в два раза.

  1. Рассчитать сумму наращивания можно и за небольшой период (меньше года). В этом случае формула определения F (2) преобразуется:

F = P * (1 + i * d/K). (4)

  • d — количество календарных дней, на которые взят кредит;
  • K — количество дней в году, т. е. 365 или 366.

Рассчитаем наращенную сумму кредита в размере 50 000 руб, выданного МФО под указанный в договоре годовую простую ставку в 15% сроком на 91 день.

Вставив значения в формулу (4), получим:

F = 50 000 * (1 + 0,15 *91/365) = 51 870 руб.

Часто банки и МФО требуют вернуть суммы больше расчетных — это означает, что были насчитаны дополнительно скрытые проценты в виде всевозможных комиссий. Перед заключением договора следует внимательно прочитывать все его пункты в поисках незаконных способов наращивания капитала.

Аналогично можно рассчитать, сколько денег заработает вкладчик, положив деньги на депозит.

Дисконтирование

Обратная операция — расчет первоначальной суммы P по наращенной F — называется дисконтированием.

Дисконтирование считается по формуле:

P = F/ (1 + i*n). (5)

К примеру, необходимо посчитать, сколько денег P нужно положить на трехгодичный депозит с простой ставкой 10%, чтобы накопить сумму F в размере 100 000 руб.

Произведем расчет по формуле (5):

P = 100 000/(1 + 0,1*3) = 76 923 руб.

Расчеты при плавающей ставке

Если ставка плавающая, то наращенная сумма рассчитывается путем суммирования ставок за каждый период их изменения, и формула преобразовывается в некую абстрактную:

F = P *(1 + ∑(1…N) n*i) (6), где:

  • n — период от одного до N;
  • i- переменная величина ставки;
  • ∑(1…N) — сумма произведений n*i за все расчетные периоды.

Выглядит страшно на первый взгляд, а как это происходит, очень легко понять по примеру:

Необходимо рассчитать наращенную сумму кредита в размере 500 000, выданного на три года, с процентной ставкой за первый год — 11% годовых, если каждые полгода ставка с учетом инфляции возрастает на 1,5%.

Используем для расчета формулу (6):

F = 500 000 *(1 + 0,11 + 0.5 (0,125 + 0,14 + 0,155 + 0,17)) = 500 000 * 1.405 = 702 500 руб.

Обратите внимание на то, что коэффициент наращивания k, рассчитываемый при фиксированном проценте по формуле (3), при плавающем проценте определяется выражением в скобках формулы (6):

K = 1 + ∑(1…N) n*i. (7)

В данном примере его величина — 1.405.

Расчеты сложных процентов

Этот метод расчета в банковской сфере используется при начислении процентов на долгосрочных депозитах, когда процент начисляется на наращенную предшествующими процентами сумму.

Формула расчета сложных процентов приведена на рисунке ниже.

Размер ставки и инфляция

Процентная ставка может быть номинальной и реальной:

  • Номинальная — установленная банком.
  • Реальная — с поправкой на инфляцию.

Реальная ставка i real меньше номинальной i nom на уровень инфляции π.

i real = i nom — π.

Эту формулу обычно используют при маленьком уровне инфляции. При большом инфляционном уровне расчеты производят по более сложной формуле Фишера:

i real = (i nom — π)/(1 + π).

Реальная цена денег

Чтобы определить реальную стоимость денег с учетом инфляции через какое-то время, используют формулу:

R= N/(1+i)ª.

R — реальная стоимость денег;

N — номинальная стоимость;

i- инфляционная ставка;

a — количество периодов (лет, месяцев и т. д.).

Банки обычно повышают процентную кредитную ставку в периоды повышенной инфляции, закладывая ее рост в номинальную ставку. Такой шаг, помимо борьбы с понижением цены денег, дает им возможность поднять процентную ставку по депозитам, чтобы не лишиться вкладчиков.

Финансовая безграмотность населения выгодна банкирам

Иногда проценты кредитования, особенно быстрого, противоречат здравому смыслу и являются завуалированной аферой. Поэтому понимание, что такое банковский процент и как рассчитать сумму наращивания должно быть у каждого, кто хочет взять кредит.

Пользуясь финансовой безграмотностью населения, банки сегодня предлагают столь мудреные и сложные формулы расчета, которые требует калькулятора инженера или программиста. Между тем, рассчитать общую сумму кредитных выплат (она же сумма наращивания), как видно по примерам, довольно просто на обычном калькуляторе и даже на листочке. Можно считать по разным формулам выплаты по телу кредита и по процентам, но отклонения между вашими итоговыми расчетами и банковскими все равно не должны быть слишком большими. Тем более здесь приведены формулы расчета по простым, а не сложным процентам, что не противоречит принципам аннуитетных платежей, используемых сегодня при кредитовании.

Банки сегодня практически не используют дифференцированный способ погашения кредита, при котором при начислении процентов учитывается оставшаяся сумма долга, а не первоначальная. Мотивируется это якобы «заботой о клиентах»: зачем, дескать, им напрягать мозги и каждый месяц производить сложные расчеты? Таким образом и получается, что наше кредитование — одно из самых невыгодных в мире.

Давайте посмотрим, во что обходится такая трогательная опека самим заемщикам, и без того оказывающимся в долговых ямах из-за грабительского процента по ипотеке.

На калькуляторе Сбербанка посчитайте переплату по кредиту 2 000 000 млн руб. сроком на 10 лет под 16% годовых при аннуитетных и дифференцированных платежах.

Разница между первым и вторым способами составляет почти 350 000 руб. Согласны ли вы сэкономить эти деньги, но зато считать проценты каждый месяц? А если даже и не устраивать проверочные расчеты, а просто поверить ипотечному калькулятору? :-)

Видео: Бешеные процентные ставки.

Оценка статьи:

Загрузка...

moezhile.ru