Формула сложных процентов для кредита. Сложный процент: формула. Начисление сложных процентов формула


Формула сложных процентов: расчет

Сложные проценты — это не что иное, как экспонента или показательная функция. Их также называют “проценты на проценты” или составные проценты (англ. compound interest) и часто пользуются ими в финансовых делах. Обычные проценты тоже используются, но скорости роста между ними существенно отличаются. Обычным процентам соответствует линейная функция. Но в денежных вопросах не используют непрерывности аргумента, как в математическом анализе, здесь лучше говорить о прогрессиях: геометрической и арифметической соответственно.

Обе данные прогрессии — это последовательности чисел, определяемые простейшими рекурсивными формулами. Их можно описать почти без всякой математики, на пальцах.

Вот, например, геометрическая прогрессия:

  1. у нас есть первый член X1;
  2. каждый следующий член последовательности равен предыдущему, умноженному на постоянное число r (знаменатель геометрической прогрессии). А формула показана ниже.

формула сложных процентов

В этой формуле, если r больше единицы, то каждый последующий член будет больше предыдущего, как правило, именно это обычно и требуют от сложных процентов. Геометрическая прогрессия образована произведением друг на друга членов этой последовательности. Чтобы понять, как работает расчет сложного процента, вычислим, к примеру, третий член такой последовательности, начав с первого:

формула сложных процентов

, и так далее.

Арифметическая прогрессия отличается от геометрической только тем, что постоянная (называемая разностью прогрессии) не умножается, а складывается с предыдущим членом для получения последующего.

Основная формула сложных процентов

В следующей формуле мы используем немного другую запись, более удобную для работы с процентами.

расчет сложных процентов

где:

  • X – конечный результат накопления
  • X0 – первоначальное значение, стартовый взнос
  • r – коэффициент увеличения, процентная ставка
  • n – число периодов накопления

r — всегда положительное число, на практике обычно небольшое. Что может дать нам эта формула? С ее помощью мы можем рассчитать довольно много вещей, но лучше начать с самого простого.

Пусть банк, которому мы доверяем, предложил сделать вклад под 8,5% годовых. Это означает, что каждый год наш капитал будет увеличиваться на 8,5%.

Некоторые люди наивно полагают (до сих пор есть такие!), что при увеличении вклада речь всегда идет только о первоначальном взносе, за которым идет прямое пропорциональное увеличение, не зависящее от времени (простые проценты). Этим пользуются и жулики. Например, Карл Маркс однажды использовал такую махинацию для обмана миллионов людей, со всеми последствиями, которые мы знаем. Но это другая и большая тема. В действительности банки используют как простые проценты, так и сложные для разных вкладов и кредитов.

На самом деле, наш капитал будет расти быстрее. Пусть мы сделали разовый вклад в 12 000 рублей на 10 лет. Тогда, даже в самом простом калькуляторе мы сможем подсчитать, что у нас получится с восемью с половиной процентами:

r = 1 + 0.085 = 1.085

Затем умножим r само на себя в 10 раз (это можно сделать, нажимая клавиши: 1.085 x2 x2 * 1.085 = x2 = ). Получим число 2,260983442. Это число умножаем на первоначальный взнос и получаем нашу итоговую сумму на счете: 27131 рублей 80 копеек.

Нужно заметить, что в банковском ПО вместо вещественных чисел для денег используют специальные валютные форматы. Это исключает недоразумения и злоупотребления, связанные с погрешностями расчетов.

Сравним с простой арифметической прогрессией. Прирост капитала за первый год: 12 000 * 1.085 – 12 000 = 12 000 * 0.085 = 1020 рублей. За 10 лет это составит 10200 рублей. Если сложить прирост с первоначальным взносом, получится всего 22200 рублей. Разница значительная: 4931,80 рублей.

Процентные ставки часто бывают довольно высокими и тогда рост капитала становится фантастическим. Но таков же и риск. И наоборот, очень низкие процентные ставки всегда означают большую надежность. Однако для хорошей прибыли за приемлемое время требуется иметь большой капитал.

Насколько вырос капитал за месяц, если проценты годовые

Период капитализации не всегда бывает годовым, иногда он рассчитывается раз в месяц, а во времена банковских компьютерных сетей можно позволить себе роскошь — рассчитывать проценты ежедневно. Расчет сложных процентов за любой период можно по другой формуле, которой и пользуются в банках:

расчет сложных процентов

где:

  • p – процент годовых
  • d – период капитализации, дней
  • y – число дней в текущем календарном году

Остальные параметры формулы те же, что и прежде. Теперь можно было бы перейти к другим традиционным задачам, связанным с процентами, но лучше взглянуть на другие возможности, которые у нас сегодня у каждого буквально под рукой.

Использование офисных программ для работы со сложными процентами

Любой офисный пакет, а именно его табличный процессор, предоставляет множество функций для денежных расчетов: от самых простых и до самых сложных. Достаточно просто выбрать нужную (или несколько) для составления своих формул. Если использовать возможность программировать на VBA в Excel, то можно получать более быстрые результаты при расчетах. Когда рассчитывается сложная процентная ставка, формула может быть простейшей рекурсией без всяких степеней и логарифмов. Все сделает цикл с параметром в число периодов начисления. При необходимости можно легко добавить сумму периодического инвестирования, не ломая голову над выводом или поиском формул.

В примере, показанном ниже, используется, правда, не MS Excel, а LibreOffice Calc, – близнец Экселя для UNIX-подобных операционных систем. Но это, в принципе, ничего совершенно не меняет. Код макроса для OOBasic хоть и отличается от экселевского, но только в технических деталях.

сложные проценты это

В примере на рисунке выше мы рассчитываем как сложные, так и простые проценты по вкладу 8,6% годовых. Проценты начисляются каждый год, а вклад рассчитан на 18 лет вперед. Начальный взнос 25 тыс. рублей мы (условно) делаем 1 января 2017 года. Если мы хотим сравнить графики для этих результатов, что, конечно, более наглядно, то добро пожаловать на следующий лист, в который этот самый график очень легко вставить.

сложные проценты это

Пример показывает, что за прошедший срок составные проценты вдвое превышают простые.

Еще один пример. Можно легко переделать нашу модель и снять ограничение на ежегодную капитализацию. Тогда мы можем решить еще одну задачу. Предположим, что мы открыли центовый счет на бирже Forex и хотим поучаствовать в торговле валютами. Считая, что мы умеем, добросовестно работая с информацией, расти на 10% в день (что, может быть, слегка самонадеянно, но бог с ним), посмотрим, что получится из депозита в одну тысячу рублей, за месяц, т.е. 22 рабочих дня. Для этого чуть изменим формулу для нашего постоянного множителя:

формула сложных процентов

Теперь мы избавились от (довольно искусственного) ограничения на ежегодный пересчет процентов. И получаем такую картину:

расчет сложных процентов

А на графике можем видеть рост и разницу между составными и обычными процентами:

расчет сложных процентов

И здесь видна разница между простыми и составными процентами.

znatokdeneg.ru

Формула сложных процентов для кредита. Сложный процент: формула :: SYL.ru

Большая часть кредитов сегодня погашается с помощью аннуитентных платежей, одинаковых ежемесячных сумм. Аналогично и на вклады осуществляется стабильное начисление процента. Одна и та же сумма каждый месяц. В банковской практике такое начисление процентов называется простым. Таким образом, в случае с кредитом ежемесячно его владелец должен будет погашать не только часть основной суммы, но и насчитанный процент за ее пользование. Такой формат партнерства является законным. Совсем другое дело, если с заемщика снимается сложный процент. Формула его расчета будет рассмотрена ниже.

Против закона, или Как банки наживаются за счет неопытных заемщиков?

Многим будет интересно узнать, но начисление сложного процента на кредит – это незаконно. Такой формат сотрудничества делает банковский продукт весьма прибыльным для финансовых институтов и полностью убыточным для клиента. Незаконный формат начисления процента осуществляется тогда, когда процентная ставка на протяжении всего срока кредитования систематически меняется. Заметить неправомерные действия банка возможно только при формировании просрочки, которой по факту быть не должно. В ходе судебных разбирательств можно доказать, что банк начислял не совсем правильный процент.

Так что же это - сложные проценты по кредиту и вкладу?

Формула сложных процентов для кредита позволит понять, что начисление осуществляется не только на основную сумму долга, но и на сумму средств, которая была образована после начисления банковского процента. Говоря проще, сложные проценты представляют собой проценты, которые начисляются сами на себя. В банковской практике их еще называют двойными процентами.

Люди часто сталкиваются с ситуациями, когда их небольшой долг превращается в кругленькую сумму средств. Суть проблемы в том, что после того как финансовый институт зафиксирует просрочку, он присоединит к сумме долга процент. Следующее начисление будет осуществлено на основную сумму долга плюс насчитанный ранее на нее процент. Долг перед банком увеличивается в геометрической прогрессии. Невыгодные сложные проценты для заемщика становятся настоящим преимуществом для вкладчиков, так как аналогично увеличению долга они обеспечивают быстрый прирост прибыли.

Сложный процент: формула для заемщиков

В финансовой практике весьма распространена схема расчета сложных процентов. Она актуальна в том случае, если процентные средства не выплачиваются каждый месяц, а прибавляются к размеру основной задолженности, которая становится новой базой для начислений банка. Если ссуда имеет продолжительность от года и более, заемщик может столкнуться со своей неплатежеспособностью.

Помогает посчитать сложный процент формула, представленная ниже. Она ориентирована под анализ только одного периода начисления.

FV = PV + % = PV + PV * % = PV * (1 + %)

Для подсчета переплаты за два периода начисления можно использовать следующую формулу:

FV = (PV + %) * (% + 1) = PV * (1 + %) * (1 + %) = PV * (1 + %)2

Посчитать объем переплаты за любое другое количество периодов поможет формула расчета сложных процентов:

FV = PV * (1 + %)N = PV * Кн, где:

  • FV – наращенная сумма долга.
  • PV – первичная сумма долга.
  • % – ставка за период начисления.
  • N – количество периодов начисления.
  • Кн – коэффициент наращения сложных процентов.

Наращивание простых и сложных процентов

Формулы простых и сложных процентов позволяют определить объемы переплаты и предварительно оценить выгоды банковского продукта. При краткосрочных займах простые проценты оказываются более выгодными для банков. Однако если срок кредитования имеет среднесрочные или долгосрочные тенденции, разница может быть весьма ощутима для клиента. Отсюда выплывают следующие закономерности:

Независимо от процентной ставки при:

  1. 0 < N < 1 , то (1 + N * %) > (1 + %)N.
  2. N > 1, то (1 + N * %) < (1 + %)N.
  3. N = 1, то (1 + N * %) = (1 + %)N.

Как видим, финансовые институты, выдающие кредиты, получают больше выгоды от простых процентов при начислении всего дохода один раз к окончанию всего срока кредитования. Сложный процент приносит выгоды только если кредитование осуществляется не менее года. Оба типа процентов дают идентичную прибыль банку, если кредит оформлен на срок в один год, а проценты начисляются один раз по окончании партнерства.

Формула сложных процентов по вкладам

Сложные проценты используются банками не только для получения выгоды от кредитования. Формат начислений применяется и при оформлении вкладов, тем самым определяя выгоды для инвесторов. Итоговую сумму вклада можно рассчитать используя следующую формулу:

S = D * (1 + % * i / Y / 100 ) * N

Для расчета прибыли по вкладу эффективно использовать другие формулы:

Sp = S - D = D * (1 + % * i / Y / 100 ) * N – D

или

Sp = D * (( 1 + % * i / Y / 100 ) * N - 1)

Для сравнения прибыльности по вкладам, которые оформлены на разный период и для каждого из которых свойственна своя ставка сложных процентов, формула будет выглядеть иначе. Она позволит определить процент, который получит инвестор после капитализации.

P1 = 100 * ((1 + % * i / Y / 100) * N - 1), где:

  • D - размер первичного вклада.
  • S - общая сумма вклада с начисленными процентами.
  • % - процентная ставка.
  • Sp - доход.
  • N - количество начислений.
  • i - количество дней по начислению процентов.
  • Y - дни в году.

Итоговая ставка банка, рассчитанная с учетом капитализации процента, называется эффективной. Финансовые институты не учитывают день окончания партнерства, если используют сложную схему начисления прибыли.

Пример расчета сложных начислений по вкладу

Формула начисления сложных процентов помогает каждому вкладчику предварительно оценить объем своего дохода. Попробуем рассчитать общий объем вклада и отдельно полученную по нему прибыль, если размер первичной инвестиции составлял 100 000 рублей на период 90 дней со ставкой 16 %.

S = 100000 + (100000 * 16 % * 90 / 365)

S = 103945,2

Sp = 100000 * 16 % * 90 / 365

Sp = 3945,2

На что обращать внимание?

Для каждого формата партнерства с банком нужно использовать индивидуальный вариант расчета. В зависимости от продолжительности вклада и периодичности выплат будет формироваться итоговый сложный процент. Формула его расчета будет изменяться от случая к случаю. Чтобы не допустить ошибок и выбрать максимально выгодную программу депозитов, нужно обратиться к экспертам. Помочь в данном вопросе могут представители финансового института. Они хоть и не имеют права рекомендовать вклады, но обязаны предоставить по просьбе полную схему расчета процентов по ним.

Капитализация при инвестировании в валютные рынки

Капитализация процентов встречается не только в банке, но и на валютном рынке «Форекс». Инвесторы, отдающие свои капиталы в доверительное управление, получают возможность следить за увеличением своих депозитов в геометрической прогрессии. Специфика данного вида инвестирования в том, что при получении прибыли она не снимается сразу, а распределяется по окончании торгового периода. На протяжении торгового периода, который может составлять неделю, месяц и даже несколько месяцев, будет автоматически проводиться начисление сложных процентов в силу специфики торговли. Для точного расчета дохода не подойдет формула сложных процентов по вкладам. Причина в отсутствии стабильной ставки. Прибыль определяется качеством торговли управляющего, его стратегией и политикой мани-менеджмента, прочими параметрами торговой системы.

Инвестору на заметку

Для расчета дохода при капитализации используется не одна формула сложных процентов для кредита и депозита, а несколько. Это обусловлено разными условиями партнерства с банком. Начисление процента на процент может проводиться каждый день, что является большой редкостью, каждую неделю, каждый месяц и даже каждый год (при долгосрочных инвестициях).

Оптимальным вариантом можно считать депозит с ежемесячной капитализацией, найти его несложно, а выгоды он принесет достаточно большие. Начисление процента на процент является тем выгодней для инвестора, чем чаще осуществляется начисление. Несмотря на более низкие процентные ставки по продуктам банка с капитализацией, прибыль в конечном счете получается на порядок больше, нежели при простой схеме начисления.

Еще один интересный момент заключается в том, что чем дольше вклад будет находиться в банке, тем быстрее он будет расти. Увеличение дохода будет происходить благодаря присоединению начислений к базовому объему средств. Если в течение года преимущества капитализации будут не так ощутимы, спустя десяток лет сомнения в преимуществах этого банковского предложения отпадут. Таким образом, выбирая меньшую процентную ставку, но останавливаясь на капитализации, можно получить более высокую прибыль по вкладу.

www.syl.ru

Простые и сложные проценты. Калькулятор сложных процентов

9.04.2016 // Александр Дюбченко   

Простые и сложные проценты калькулятор сложных процентов

Начисление процентов — одна из основных операций в экономике и инвестировании. Самый близкий всем пример — депозит в банке, где вложенные деньги в конце периода возвращаются к владельцу с прибылью.

А что будет, если повторить этот цикл несколько раз? Тут то и появляется понятие простых и сложных процентов, которым посвящена эта статья.

Содержание:

Простые и сложные проценты

Инвесторы, которые работают на рынке Форекс, сталкиваются с повторным вложением денег (реинвестированием) постоянно. Если банковские депозиты приносят владельцам прибыль через несколько месяцев или даже год, то на валютном рынке прибыль/убыток появляется после каждой сделки.

Поэтому все, кто интересуется инвестициями на Форексе, будут регулярно работать с простыми и сложными процентами. Давайте же разберемся, что же означают эти понятия.

Простой процент — прибыль по многоразовым вкладам за каждый период времени всегда начисляется только на первоначальную сумму.

Пример: депозит 5000$ под 20% годовых. По схеме простого процента и в первый, и во второй, и в любой другой год прибыль составит 1000$. Чтобы узнать прибыль за N лет, просто умножьте прибыль за один год на число N.

Простой процент используется в случаях, когда база начисления процентов всегда равна начальной сумме вложений. Это могут быть специальные банковские депозиты, проценты по кредиту. Также простой процент используется, когда инвестор регулярно выводит прибыль — в каждый период времени работает первоначальная сумма.

Сложный процент — проценты по многоразовым вкладам за каждый период начисляются на первоначальную сумму и всю полученную до этого прибыль.

Пример: депозит 5000$ под 20% годовых. В первый год прибыль составит 5000$ * 20% = 1000$, во второй (5000$ + 1000$) * 20% = 1200$, в третий (5000$ +1000$ + 1200$) * 20% = 1440$ и так далее.

Каждый раз, когда инвестор хочет несколько раз «прокрутить» свои деньги через инвестиционный инструмент, он сталкивается со сложным процентом. Полученная прибыль на первом круге реинвестируется и проценты уже начисляются на более крупную сумму.

В инвестициях на рынке Форекс сложный процент используется постоянно, потому что сумма вложений меняется постоянно — фактически после каждой сделки. Многие инвесторы используют тактику «вложил и забыл», оставляя полученную прибыль работать вместе со стартовым вкладом.

Разница между простыми и сложными процентами на первый взгляд кажется не такой уж большой. Но чем больше проходит времени, тем очевиднее становится преимущество сложных процентов:

Простые и сложные проценты

Простые и сложные проценты на одном графике

Конечно, это всё теория и на практике добиться 30-кратного реинвестирования прибыли совсем непросто. Но факт остаётся фактом — сложные проценты могут сослужить хорошую службу инвестору. И чтобы умело их использовать, нужно правильно их считать, в чём помогут несколько полезных формул.

↑ К СОДЕРЖАНИЮ ↑

Формулы сложных процентов по вкладам и примеры решения задач

Представьте, что вам нужно рассчитать прибыль от банковского вклада за несколько лет. Для этого понадобится такая информация:

  • начальная сумма вклада (K нулевая или К0)
  • ставка доходности (R) — переводится из процентов в число (10% = 0.1)
  • количество периодов реинвестирования, то есть лет (n)

А конечную сумму вклада мы назовем просто K. Её можно рассчитать по формуле:

Формула сложных процентов по вкладам

Конечная сумма при расчёте сложных процентов по вкладу

Пример задачи: Инвестор П. положил на депозит в банке 10000$ под 10% годовых. Какую прибыль он получит через 5 лет?

Для начала, давайте узнаем конечную сумму вклада по формуле:

K = 10000$ * (1 + 0.1)5 = 16105.1$

Прибыль (P) — это разница между конечной и стартовой суммой вклада. Считаем:

P = K — К0 = 16105.1$ — 10000$ = 6105.1$

Можно даже подсчитать прибыль в процентах, для этого нужно найти не разницу, а отношение между конечной и стартовой суммой:

P (%) = K/К0 — 1 = 16105.1$ / 10000$ — 1= 61.05%

Используя формулу сложных процентов, вы всегда можете предсказать результат инвестирования в будущем. Впрочем, бывают ситуации, когда вам нужно узнать не конечную, а стартовую сумму вклада. Её можно найти по той же формуле сложных процентов по вкладам, но надо немного её изменить:

Формула расчёта сложных процентов

Формула расчёта сложных процентов для поиска стартовой суммы вклада

Пример задачи: Инвестор В. хочет узнать, сколько ему надо вложить рублей под 20% годовых сейчас, чтобы через 3 года стать рублёвым миллионером. 

Используем формулу:

К0 = 1000000₽ / (1 + 0.2)3 =  578703.7₽

Кроме суммы вклада, через формулу можно найти и остальные параметры. Например, зная стартовую и конечную сумму, можно узнать процентную ставку или количество периодов реинвестирования.

Начнем с процентной ставки:Формула расчёта сложных процентов по вкладу

Формула расчёта сложных процентов по вкладу для поиска нужной процентной ставки

Пример задачи: Инвестор Р. хочет выяснить, вклад с какой процентной ставкой ему нужен, чтобы заработать 10000$ за 3 года, изначально вложив 20000$.

Для начала нужно посчитать конечную сумму, так как мы знаем только прибыль:

K = К0 + P = 20000$ + 10000$ = 30000$

А теперь можно использовать формулу:

R = (30000$ / 20000$) ^ 1/3 — 1 = 14.47%

Чтобы получить такую доходность, банковский депозит не подойдёт, а вот консервативный ПАММ-счёт — вполне.

Напоследок давайте выясним, как рассчитать, на какой срок нужно положить деньги, чтобы получить нужную нам прибыль. Без логарифмов не обойтись:

Расчёт сложных процентов по вкладу

Расчёт сложных процентов по вкладу — поиск нужного количества периодов реинвестирования

Пример задачи: сколько лет нужно держать деньги на депозите в банке под 25% годовых, чтобы 50000 рублей превратить в 100000?

Подставляем в формулу:

n = log1+0.25 100000/50000 = 3.11 лет

Кстати, если речь идёт о банке, то 3.11 лет округляются до 4 — вы обычно не можете снять свои деньги до окончания периода действия вклада. Условия конкретного инвестиционного инструмента всегда стоит учитывать при решении подобных задач.

Кроме рассмотренных нами задач существуют и более сложные. Например, довольно распространённая история — у инвестора есть вклад с возможностью пополнения. Часть каждой зарплаты отправляется туда и надо выяснить, какой же будет результат по итогам.

Пример задачи: Инвестор З. вложил 1000$ и откладывает 50$ каждый месяц. Процентная ставка — 1% в месяц. Какая сумма накопится через 5 лет?

Чтобы узнать результат, нужно создать табличку:

Формула сложных процентов по вкладам

Расчёт результатов инвестирования с доливками, с учётом сложных процентов

В первый месяц сумма инвестиций составила 1000$, на неё начислен 1% — итого 1010$. Во второй месяц работают уже 1010$ и еще 50$, которые инвестор внёс дополнительно. Итого — 1070.10. И так далее…

Разумеется, считать эти таблички каждый раз — довольно напряжно, решать логарифмы — тем более. Поэтому специально для вас при помощи программы Microsoft Excel я сделал небольшой файлик для решения задач по сложным процентам.

↑ К СОДЕРЖАНИЮ ↑

Калькулятор сложных процентов от Вебинвеста

Многие формулы сложных процентов по вкладам на обычном калькуляторе не посчитаешь — нужно использовать специальные программы или сайты. Microsoft Excel позволяет делать практически любые прикладные расчёты быстро и удобно — всего-то нужно скачать файл и работать с ним.

По формулам из статьи я сделал небольшой калькулятор для расчёта сложных процентов. Вот так выглядит одна из страниц:

Калькулятор сложных процентов с капитализацией

Скриншот из калькулятора сложных процентов с капитализацией. 

С помощью файла вы сможете решить задачи, которые мы рассматривали по ходу статьи:

  • расчёт конечной суммы вклада;
  • расчёт начальной суммы вклада;
  • расчёт нужной процентной ставки;
  • расчёт срока инвестирования;
  • расчёт конечной суммы вклада с учётом добавочных вложений или снятия прибыли.

Как получить калькулятор сложных процентов от Вебинвеста? Очень легко — воспользуйтесь формой ниже:

Больше подробностей о калькуляторе сложных процентов вы можете узнать на этой странице.

↑ К СОДЕРЖАНИЮ ↑

На этом всё на сегодня. Удачи и терпения в инвестициях!

Vf7dcDy_Iz4Автор: Александр Дюбченко - добавляйтесь в дрyзья Вконтакте и на Facebook. Занимаюсь инвестированием в Интернете 5 лет, имею большой опыт работы с ПАММ-счетами/рынком Форекс и превращаю этот опыт в прибыль. Ведy Теlеgram-канал Вебинвестор. Разрабатываю вспомогательные инструменты веб-инвестора на основе MS Excel.

Хобби: интеллектуальные и стратегические игры.

Понравилась статья? Сохраните её себе!

webinvestor.pro

Сложный процент

Формула сложного процента здесь

Сложным процентом принято называть эффект, когда проценты прибыли прибавляются к основной сумме и в дальнейшем сами участвуют в создании новой прибыли.Формула сложного процента — это формула, по которой рассчитывается итоговая сумма с учётом капитализации (начислении процентов).

Простой расчет сложных процентов

Чтобы лучше усвоить расчет сложных процентов, давайте разберём пример. Представим, что вы положили 10 000 руб в банк под 10 процентов годовых. Через год на вашем банковском счету будет лежать сумма SUM = 10000 + 10000*10% = 11 000 руб. Ваша прибыль — 1000 рублей. Вы решили оставить 11 000 руб на второй год в банке под те же 10 процентов. Через 2 года в банке накопится 11000 + 11000*10% = 12 100 руб.

Прибыль за первый год (1000 рублей) прибавилась к основной сумме (10000р) и на второй год уже сама генерировала новую прибыль. Тогда на 3-й год прибыль за 2-й год прибавится к основной сумме и будет сама генерировать новую прибыль. И так далее.

Этот эффект и получил название сложный процент.

Когда вся прибыль прибавляется к основной сумме и в дальнейшем уже сама производит новую прибыль.

Формула сложного процента:

SUM = X * (1 + %)n

где SUM — конечная сумма; X — начальная сумма; % — процентная ставка, процентов годовых /100; n — количество периодов, лет (месяцев, кварталов).

Расчет сложных процентов: Пример 1. Вы положили 50 000 руб в банк под 10% годовых на 5 лет. Какая сумма будет у вас через 5 лет? Рассчитаем по формуле сложного процента:

SUM = 50000 * (1 + 10/100)5 = 80 525, 5 руб.

Сложный процент может использоваться, когда вы открываете срочный вклад в банке. По условиям банковского договора процент может начисляться например ежеквартально, либо ежемесячно.

Расчет сложных процентов: Пример 2. Рассчитаем, какая будет конечная сумма, если вы положили 10 000 руб на 12 месяцев под 10% годовых с ежемесячным начислением процентов.

SUM = 10000 * (1+10/100/12)12 = 11047,13 руб.

Прибыль составила:

ПРИБЫЛЬ = 11047,13 — 10000 = 1047,13 руб

Доходность составила (в процентах годовых):

% = 1047,13 / 10000 = 10,47 %

То есть при ежемесячном начислении процентов доходность оказывается больше, чем при начислении процентов один раз за весь период.

Если вы не снимаете прибыль, тогда начинает работать сложный процент.

Формула сложного процента для банковских вкладов

На самом деле формула сложного процента применительно к банковским вкладам несколько сложнее, чем описана выше. Процентная ставка для вклада (%) рассчитывается так:

% = p * d / y

гдеp — процентная ставка (процентов годовых / 100) по вкладу, например, если ставка 10,5%, то p = 10,5 / 100 = 0,105;d — период (количество дней), по итогам которого происходит капитализация (начисляются проценты), например, если капитализация ежемесячная, то d = 30 дней если капитализация раз в 3 месяца, то d = 90 дней;y — количество дней в календарном году (365 или 366).

То есть можно рассчитывать процентную ставку для различных периодов вклада.

Формула сложного процента для банковских вкладов выглядит так:

SUM = X * (1 + p*d/y)n

При расчете сложных процентов нужно принимать во внимание тот факт, что со временем наращивание денег превращается в лавину. В этом привлекательность сложных процентов. Представьте себе маленький снежный комок размером с кулак, который начал катиться со снежной горы. Пока комок катится, снег налипает на него со всех сторон и к подножию прилетит огромный снежный камень. Также и со сложным процентом. Поначалу прибавка, создаваемая сложным процентом, почти незаметна. Но через какое-то время она показывает себя во всей красе. Наглядно это можно увидеть на примере ниже.

Расчет сложных процентов: Пример 3. Рассмотрим 2 варианта: 1. Простой процент. Вы инвестировали 50 000 руб на 15 лет под 20%. Дополнительных взносов нет. Всю прибыль вы снимаете. 2. Сложный процент. Вы инвестировали 50 000 руб на 15 лет под 20%. Дополнительных взносов нет. Каждый год проценты прибыли прибавляются к основной сумме. 

Комментарии, как говорится, излишни. Вложения с использованием сложного процента НА ПОРЯДОК выгоднее, чем с простым процентом. Чем больше проценты прибыли, чем дольше срок инвестирования, тем ярче проявляет себя сложный процент.

В случае простого процента график увеличения капитала получается линейный, поскольку вы снимаете прибыль и не даёте ей работать и приносить новую прибыль. В случае сложного процента график получается экспоненциальным, с течением времени кривая увеличения капитала становится всё круче, всё больше стремится вверх. Это происходит оттого, что из года в год прибыль накапливается и создаёт новую прибыль.

На графике ниже показано как вырастет капитал, если вложить 50 000 руб на 15 лет под 10%, 15% и 20%.

Наращивание сложного процента

Как видите, на длительном промежутке времени очень важным становится то, под какой процент вы инвестируете деньги. Через 15 лет при 10% годовых 50 тысяч рублей превратятся в 200 тысяч, при 15% — уже в 400 тысяч, а при 20% годовых — в 780 тысяч.

Таким образом, сложный процент является мощным орудием по увеличению капитала на длительных промежутках времени.

* * *

Из формулы расчёта сложного процента можно выразить процентную ставку и количество лет (месяцев).

Процентная ставка:

% = (SUM / X)1/n — 1

Расчет сложных процентов: Пример 4. Какая процентная ставка должна быть, чтобы за 10 лет 50 000 рублей превратились в 100 000 рублей?

% = (100000 / 50000)1/10 — 1 = 0,0718 = 7,18 % годовых

Количество периодов (месяцев, лет):

n = log(1+%) (SUM / X)

Расчет сложных процентов: Пример 5. Сколько потребуется лет, чтобы 50 000 руб. нарастились до 1 000 000 руб. при процентной ставке 40% ?

n = log(1+0,4) (1000000 / 50000) = 8,9 лет

log = 2,7182818

Источник

smart-lab.ru

Сложные проценты в MS EXCEL. Постоянная ставка. Примеры и методы

Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.

Немного теории

Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по простым и сложным процентам.

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования простых процентов изменяется в каждом периоде начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».

В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.

В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов читайте здесь.

Начисление процентов 1 раз в год

Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)^2, через n лет – P*(1+i)^n. Таким образом, получим формулу наращения для сложных процентов:S = Р*(1+i)^nгде S - наращенная сумма,i - годовая ставка,n - срок ссуды в годах,(1+ i)^n - множитель наращения.

Начисление процентов несколько раз в год

В рассмотренном выше случае капитализация производится 1 раз в год. При капитализации m раз в год формула наращения для сложных процентов выглядит так:S = Р*(1+i/m)^(n*m)i/m – это ставка за период. На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).

В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.

Рассмотрим задачу: Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.

Способ 1. Вычисление с помощью таблицы с формуламиЭто самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода.В файле примера это реализовано на листе Постоянная ставка.

За первый период будут начислены проценты в сумме =20000*(15%/12), т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес.При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.

Способ 2. Вычисление с помощью формулы Наращенных процентовПодставим в формулу наращенной суммы S = Р*(1+i )^n значения из задачи.S = 20000*(1+15%/12)^12Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации).Другой вариант записи формулы – через функцию СТЕПЕНЬ()=20000*СТЕПЕНЬ(1+15%/12; 12)

Способ 3. Вычисление с помощью функции БС().Функция БС() позволяет определить будущую стоимость инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е. она предназначена прежде всего для расчетов в случае аннуитетных платежей. Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов.=-БС(15%/12;12;;20000)

Или так =-БС(15%/12;12;0;20000;0)

Примечание. В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов используется функция БЗРАСПИС().

Определяем сумму начисленных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.

Сумма начисленных процентов I равна разности между величиной  наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i )^n, получим:I = S – P= Р*(1+i)^n – Р=P*((1+i)^n –1)=150000*((1+12%)^5-1)Результат: 114 351,25р.Для сравнения: начисление по простой ставке даст результат 90 000р. (см. файл примера).

Определяем Срок долга

Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится? Логарифмируя обе части уравнения S = Р*(1+i)^n, решим его относительно неизвестного параметра n.

В файле примера приведено решение, ответ 6,12 лет.

Вычисляем ставку сложных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?

В файле примера приведено решение, ответ 14,87%.

Примечание. Об эффективной ставке процентов читайте в этой статье.

Учет (дисконтирование) по сложным процентам

Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход. Рассмотрим 2 вида учета: математический и банковский.

Математический учет. В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i )^nВеличину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S.Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S - P называется дисконтом.

Пример. Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых.Другими словами, известно:n = 7 лет,S = 2 000 000 руб.,i = 15% .

Решение. P = 2000000/(1+15% )^7Значение текущей стоимости будет меньше, т.к. открыв сегодня вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.

Тот же результат можно получить с помощью формулы =ПС(15%;7;;-2000000;1)Функция ПС() возвращает приведенную (к текущему моменту) стоимость инвестиции и рассмотрена здесь.

Банковский учет. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле:Р = S*(1- dсл )^n где dcл - сложная годовая учетная ставка.

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Сравнив формулу наращения для сложных процентов S = Р*(1+i )^n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл )^n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи Начисление процентов несколько раз в год.

excel2.ru

Ставка формула начисление расчет сложных процентов

Речь в ней пойдет, в первую очередь о ставке сложных процентов, замет будет дана формула сложных процентов, далее рассмотрю подробно начисление сложных процентов (опираясь на формулу) и в конце расчет сложных процентов на конкретном примере с цифрами для лучшего понимания и запоминания расчета и начисления.

Ставка сложных процентов – это ставка, которая начисляется на первую инвестированную сумму и начисленные в прошлых периодах проценты. Данная ставка обычно устанавливается в процентах к сумме, внесенной инвестором. Она очень важная, так как, чем выше ставка сложных процентов, тем выше конечная сумма по вкладу, например. Это один из нескольких элементов на котором стоят отношения между кредитором и дебитором, кредитодателем и кредитополучателем и т.д. Без данной ставке немыслимо и само существование такого понятие как кредитование, т.к. у тех людей, которые дают денежные средства, нет стимула их давать, т.е. нет дополнительного дохода, который приносит проценты, а в нашем случае сложные проценты.

Формула сложных процентов сложнее, чем простых и имеется несколько модификаций, в зависимости от условий соглашения (договора). Так, при начислении сложного процента один раз в год вкладчик в конце периода (года) получит сумму равную Р(1+r), где Р – сумма инвестированная, а r – процентная ставка, однако через два года формула будет иметь вид Р(1+r)^2, где ^2- квадратичная степень (в квадрате). В конце третьего года формула выглядит как Р(1+r)^3, т.е. меняется только степень.

Таким образом, для того, чтобы посчитать начисление сложных процентов за определенный период (измеряемый годами), необходимо вместо степени n поставить количество лет, которое необходимо, а формула выгладит так Р(1+r)^n.

При начислении процентов несколько раз в год формула выглядит так: Р*(1 + r/m)^nm, где m – периодичность начисления процента в течение года. Т.е. один плюс ставка процента деленная на периодичность начисления процента в течение года все это в степени произведения периода инвестирования и периодичности начисления процента в течение года и все это умножить на первоначальную сумму.

Теперь рассмотрим начисление сложных процентов и плавно к расчету сложных процентов.

Петя положил 100 рублей под 10 процентов годовых, и используются сложные проценты (с капитализацией). Через год он получил 110 рублей (100*0,1), но через два года у него уже 121 рублей (100 * (1+0,1)^2), через три 133,1 рублей (100 * (1+0,1)^3), а через 25 лет 1083,47 рублей (100 * (1+0,1)^25). Все просто.

Как же происходит начисление сложных процентов несколько раз в год?

Расчет производится по формуле, которая описывалась выше, а здесь приведем пример такого начисления сложных процентов.

У нас 100 рублей и процентная ставка 20 процентов. Определим сумму, которую мы получим, если инвестируем на срок до пяти лет, а сложные проценты начисляются ежеквартально:Р = 100 * (1 + 0,2/4) ^ 4*5 = 265,33 рубля

Т.е. 0,2 – 20 процентов, 4 (где 4*5) – четыре квартала (в году ТОЛЬКО 4 квартала ни больше ни меньше). 4 (где 0,2/4) — периодичность начисления процента в течение года, а 5 – лет инвестирования. И здесь ничего сложного, просто необходимо производить более сложные расчеты, которые без компьютера, а тем более калькулятора производить трудоемко.

Аналогично производится начисление по месяцам, только вместо 4*5 необходимо 12*5, т.к. в году двенадцать месяцев.

Таким образом, отличаются сложные проценты от простых только со второго года (периода) их начисления, т.к. за первый год начисление производится по формуле простого процента, а не сложного. При расчете сложного процента необходимо учитывать процентную ставку, срок инвестирования, первоначальную сумму и периодичность начисления процента в течение года.

dengifinance.ru

Простые и сложные проценты: понятие и формулы

Несомненно, выгодность банковского вклада, в первую очередь, определяет процентная ставка. Ведь именно на нее ориентируется каждый потенциальный клиент. Но, на самом деле, вкладчику нужно, в частности, обратить внимание не на годовую процентную ставку, а на метод начисления прибыли. Ведь в финансовой системе банка существуют два понятия: простой и сложный процент. А для каждого вкладчика нужно точно знать, что такое простые и сложные проценты понятие и формулы, чтобы определить, какой вклад будет наиболее выгодный для него.

простые и сложные проценты понятие и формулы

Что такое простой процент

В первую очередь, простой процент – это начисление вознаграждения за размещение вклада на банковском счете за весь период хранения средств. Если говорить простыми словами, то простой процент начисляется лишь по окончании срока действия депозитного договора, он определяется в годовой процентной ставке. Причем, если договор автоматически продлевается на следующий срок, то вознаграждение за предыдущий период не причисляется к телу депозита.

Чтобы максимально точно понять, что такое простая система начисления прибыли рассмотрим пример. Вы разместили в банке 50000 рублей под 7% годовых на один год. По окончании срока действия договора ваша прибыль составит 50000×0,07=3500 рублей. При автоматической пролонгации договора на следующий срок ваша прибыль составит снова 3500 рублей. То есть спустя 2 года вы сможете в банке получить 50000+3500+3500=57000 рублей.

Важно! Формула расчета простых процентов выглядит следующим образом: K=D×p. Где K – сумма прибыли, D – тело депозита, p – годовая процентная ставка (в формуле нужно указывать не годовую ставку, а ставку, деленную на 100).

Если вы размещаете средства на срок меньше чем на один год, то соответственно процентная ставка годовая делится на 12 и умножается на количество месяцев, в течение которых средства были на банковском счете. Например, если срок депозита 3 месяца, а процентная ставка 10% в год, то общая прибыль рассчитывается следующим образом.0,1/12×3=0,025. Например, если вы разместили 50000 рублей сроком на 3 месяца, то прибыль по окончании срока действия договора будет следующий: 50000×0,025=1250 рублей.

отличие простых процентов от сложных

Формулы простых и сложных процентов

Сложные проценты по вкладу

Отличие простых процентов от сложных на самом деле довольно большое. При выборе депозитного продукта наверняка каждому приходилось слышать о таком понятии, как капитализация. То есть это та схема начисления прибыли, при которой начисленная прибыль причисляется к телу депозита, а на него в будущем снова начисляется доход.

Обратите внимание, что капитализация осуществляется с определенной периодичностью, например, один раз в неделю, в месяц в квартал или год.

Отсюда можно сделать вывод, что капитализация позволяет получить большую прибыль по сравнению с простым процентом. Чтобы наглядно в этом убедиться рассмотрим формулу расчета сложных процентов, а выглядеть она будет следующим образом: B=(K×H×P/N)/100, где:

  • B – размер начисленной прибыли;
  • K – тело депозита;
  • H – годовая ставка;
  • P – количество дней, в течение которых происходит капитализация;
  • N – число дней в году.

Чтобы наглядно понять, как именно будет рассчитываться сложный процент. Рассмотрим простой пример. Сумма депозита 50000 рублей процентная ставка в год 7%, капитализация осуществляется ежемесячно, срок действия договора один год. Произведем расчет прибыли за первый месяц пользования депозитом: B=(50000×7×30/365)/100=287,6 рублей – это прибыль за первый месяц. В следующем периоде расчет будет выглядеть следующим образом: B=(50287,6×7×31/365)/100=298,9 рублей.

Из вышеприведенного примера можно сделать вывод, что капитализация позволяет получать с каждым месяцем большую прибыль по сравнению с предыдущим. Вот только при выборе депозитного предложения обязательно обратить внимание, с какой периодичностью осуществляется капитализация процентов, чем чаще, тем больше выгоды получает клиент.

В чем отличие

На самом деле система начисления процентов по вкладам сильно различается в первую очередь по той причине, что с капитализацией процентов выгода депозита может быть значительно выше, нежели при простой системе. Потому что при простой системе прибыль растет в арифметической прогрессии, а при сложной в геометрической. Чтобы наглядно в этом убедиться, ниже приведена схема сложных процентов в сравнении со схемой простых процентов.

схема сложных процентов в сравнении со схемой простых процентов

Схема сложных процентов в сравнении со схемой простых процентов

Но, в этом вопросе также есть подводные камни. Условия банковских вкладов строго индивидуальны, поэтому при выборе депозитного продукта в первую очередь обратите внимание на количество периодов капитализации за весь срок действия договора. Например, банк указывает, что по вашему депозитному договору предусмотрена капитализация процентов, но она осуществляется 1 раз в 6 месяцев, то есть первый доход, вы получите спустя полгода после заключения соглашения с банком. При этом вы решили разместить средства лишь на 3 месяца, соответственно, вы получите свои средства раньше, чем банк проведет капитализацию процентов и в данном случае целесообразней выбрать простой расчет процент по вкладу.

Важно! Большинство банков предлагают по одному и тому же депозитному предложению своим клиентам сделать выбор получать прибыль с определенной периодичностью или причислять себя к телу депозита, соответственно, у клиента есть возможность выбрать по какой системе простой или сложной, он хотел бы получать свой доход.

На самом деле понять, в чем состоит принципиальная разница между простыми и сложными процентами достаточно просто, но все же нюанс заключается в том, что банки в договоре не указывают такие понятия, как простые и сложные проценты каждый потенциальный вкладчик должен обращать внимание на все условия договора. Если в договоре указано, что проценты выплачиваются по окончании срока действия договора, соответственно, капитализация по такому договору не предусмотрена.

znatokdeneg.ru